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Preface

Applied mathematics rests on two central pillars: calculus and linear algebra. While cal-
culus has its roots in the universal laws of Newtonian physics, linear algebra arises from a
much more mundane issue: the need to solve simple systems of linear algebraic equations.
Despite its humble origins, linear algebra ends up playing a comparably profound role in
both applied and theoretical mathematics, as well as in all of science and engineering,
including computer science, data analysis and machine learning, imaging and signal pro-
cessing, probability and statistics, economics, numerical analysis, mathematical biology,
and many other disciplines. Nowadays, a proper grounding in both calculus and linear al-
gebra is an essential prerequisite for a successful career in science, technology, engineering,
statistics, data science, and, of course, mathematics.

Since Newton, and, to an even greater extent following Einstein, modern science has
been confronted with the inherent nonlinearity of the macroscopic universe. But most of
our insight and progress is based on linear approximations. Moreover, at the atomic level,
quantum mechanics remains an inherently linear theory. (The complete reconciliation
of linear quantum theory with the nonlinear relativistic universe remains the holy grail
of modern physics.) Only with the advent of large-scale computers have we been able
to begin to investigate the full complexity of natural phenomena. But computers rely
on numerical algorithms, and these in turn require manipulating and solving systems of
algebraic equations. Now, rather than just a handful of equations, we may be confronted
by gigantic systems containing thousands (or even millions) of unknowns. Without the
discipline of linear algebra to formulate systematic, efficient solution algorithms, as well
as the consequent insight into how to proceed when the numerical solution is insufficiently
accurate, we would be unable to make progress in the linear regime, let alone make sense
of the truly nonlinear physical universe.

Linear algebra can thus be viewed as the mathematical apparatus needed to solve po-
tentially huge linear systems, to understand their underlying structure, and to apply what
is learned in other contexts. The term “linear” is the key, and, in fact, it refers not just
to linear algebraic equations, but also to linear differential equations, both ordinary and
partial, linear boundary value problems, linear integral equations, linear iterative systems,
linear control systems, and so on. It is a profound truth that, while outwardly different,
all linear systems are remarkably similar at their core. Basic mathematical principles such
as linear superposition, the interplay between homogeneous and inhomogeneous systems,
the Fredholm alternative characterizing solvability, orthogonality, positive definiteness and
minimization principles, eigenvalues and singular values, and linear iteration, to name but
a few, reoccur in surprisingly many ostensibly unrelated contexts.

In the late nineteenth and early twentieth centuries, mathematicians came to the real-
ization that all of these disparate techniques could be subsumed in the edifice now known
as linear algebra. Understanding, and, more importantly, exploiting the apparent simi-
larities between, say, algebraic equations and differential equations, requires us to become
more sophisticated — that is, more abstract — in our mode of thinking. The abstraction
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process distills the essence of the problem away from all its distracting particularities, and,
seen in this light, all linear systems rest on a common mathematical framework. Don’t be
afraid! Abstraction is not new in your mathematical education. In elementary algebra,
you already learned to deal with variables, which are the abstraction of numbers. Later,
the abstract concept of a function formalized particular relations between variables, say
distance, velocity, and time, or mass, acceleration, and force. In linear algebra, the abstrac-
tion is raised to yet a further level, in that one views apparently different types of objects
(vectors, matrices, functions, ...) and systems (algebraic, differential, integral, ...) in a
common conceptual framework. (And this is by no means the end of the mathematical
abstraction process; modern category theory, [37], abstractly unites different conceptual
frameworks.)

In applied mathematics, we do not introduce abstraction for its intrinsic beauty. Our
ultimate purpose is to develop effective methods and algorithms for applications in science,
engineering, computing, statistics, data science, etc. For us, abstraction is driven by the
need for understanding and insight, and is justified only if it aids in the solution to real
world problems and the development of analytical and computational tools. Whereas to the
beginning student the initial concepts may seem designed merely to bewilder and confuse,
one must reserve judgment until genuine applications appear. Patience and perseverance
are vital. Once we have acquired some familiarity with basic linear algebra, significant,
interesting applications will be readily forthcoming. In this text, we encounter graph theory
and networks, mechanical structures, electrical circuits, quantum mechanics, the geometry
underlying computer graphics and animation, signal and image processing, interpolation
and approximation, dynamical systems modeled by linear differential equations, vibrations,
resonance, and damping, probability and stochastic processes, statistics, data analysis,
splines and modern font design, and a range of powerful numerical solution algorithms, to
name a few. Further applications of the material you learn here will appear throughout
your mathematical and scientific career.

This textbook has two interrelated pedagogical goals. The first is to explain basic
techniques that are used in modern, real-world problems. But we have not written a mere
mathematical cookbook — a collection of linear algebraic recipes and algorithms. We
believe that it is important for the applied mathematician, as well as the scientist and
engineer, not just to learn mathematical techniques and how to apply them in a variety
of settings, but, even more importantly, to understand why they work and how they are
derived from first principles. In our approach, applications go hand in hand with theory,
each reinforcing and inspiring the other. To this end, we try to lead the reader through the
reasoning that leads to the important results. We do not shy away from stating theorems
and writing out proofs, particularly when they lead to insight into the methods and their
range of applicability. We hope to spark that eureka moment, when you realize “Yes,
of course! I could have come up with that if I'd only sat down and thought it out.”
Most concepts in linear algebra are not all that difficult at their core, and, by grasping
their essence, not only will you know how to apply them in routine contexts, you will
understand what may be required to adapt to unusual or recalcitrant problems. And, the
further you go on in your studies or work, the more you realize that very few real-world
problems fit neatly into the idealized framework outlined in a textbook. So it is (applied)
mathematical reasoning and not mere linear algebraic technique that is the core and raison
d’étre of this text!

Applied mathematics can be broadly divided into three mutually reinforcing compo-
nents. The first is modeling — how one derives the governing equations from physical
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principles. The second is solution techniques and algorithms — methods for solving the
model equations. The third, perhaps least appreciated but in many ways most important,
are the frameworks that incorporate disparate analytical methods into a few broad themes.
The key paradigms of applied linear algebra to be covered in this text include

Gaussian Elimination and factorization of matrices;

linearity and linear superposition;

span, linear independence, basis, and dimension;

inner products, norms, and inequalities;

compatibility of linear systems via the Fredholm alternative;

positive definiteness and minimization principles;

orthonormality and the Gram—Schmidt process;

least squares solutions, interpolation, and approximation;

linear functions and linear and affine transformations;

eigenvalues and eigenvectors/eigenfunctions;

singular values and principal component analysis;

linear iteration, including Markov processes and numerical solution schemes;
linear systems of ordinary differential equations, stability, and matrix exponentials;

vibrations, quasi-periodicity, damping, and resonance; .

These are all interconnected parts of a very general applied mathematical edifice of remark-
able power and practicality. Understanding such broad themes of applied mathematics is
our overarching objective. Indeed, this book began life as a part of a much larger work,
whose goal is to similarly cover the full range of modern applied mathematics, both lin-
ear and nonlinear, at an advanced undergraduate level. The second installment is now in
print, as the first author’s text on partial differential equations, [61], which forms a nat-
ural extension of the linear analytical methods and theoretical framework developed here,
now in the context of the equilibria and dynamics of continuous media, Fourier analysis,
and so on. Our inspirational source was and continues to be the visionary texts of Gilbert
Strang, [79, 80]. Based on students’ reactions, our goal has been to present a more linearly
ordered and less ambitious development of the subject, while retaining the excitement and
interconnectedness of theory and applications that is evident in Strang’s works.

Syllabi and Prerequisites

This text is designed for three potential audiences:

e A beginning, in-depth course covering the fundamentals of linear algebra and its appli-
cations for highly motivated and mathematically mature students.

e A second undergraduate course in linear algebra, with an emphasis on those methods
and concepts that are important in applications.

e A beginning graduate-level course in linear mathematics for students in engineering,
physical science, computer science, numerical analysuis, statistics, and even math-
ematical biology, finance, economics, social sciences, and elsewhere, as well as
master’s students in applied mathematics.

Although most students reading this book will have already encountered some basic
linear algebra — matrices, vectors, systems of linear equations, basic solution techniques,
etc. — the text makes no such assumptions. Indeed, the first chapter starts at the very
beginning by introducing linear algebraic systems, matrices, and vectors, followed by very
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basic Gaussian Elimination. We do assume that the reader has taken a standard two
year calculus sequence. One-variable calculus — derivatives and integrals — will be used
without comment; multivariable calculus will appear only fleetingly and in an inessential
way. The ability to handle scalar, constant coefficient linear ordinary differential equations
is also assumed, although we do briefly review elementary solution techniques in Chapter 7.
Proofs by induction will be used on occasion. But the most essential prerequisite is a
certain degree of mathematical maturity and willingness to handle the increased level of
abstraction that lies at the heart of contemporary linear algebra.

Survey of Topics

In addition to introducing the fundamentals of matrices, vectors, and Gaussian Elimination
from the beginning, the initial chapter delves into perhaps less familiar territory, such as
the (permuted) LU and L DV decompositions, and the practical numerical issues underly-
ing the solution algorithms, thereby highlighting the computational efficiency of Gaussian
Elimination coupled with Back Substitution versus methods based on the inverse matrix
or determinants, as well as the use of pivoting to mitigate possibly disastrous effects of
numerical round-off errors. Because the goal is to learn practical algorithms employed
in contemporary applications, matrix inverses and determinants are de-emphasized —
indeed, the most efficient way to compute a determinant is via Gaussian Elimination,
which remains the key algorithm throughout the initial chapters.

Chapter 2 is the heart of linear algebra, and a successful course rests on the students’
ability to assimilate the absolutely essential concepts of vector space, subspace, span, linear
independence, basis, and dimension. While these ideas may well have been encountered
in an introductory ordinary differential equation course, it is rare, in our experience, that
students at this level are at all comfortable with them. The underlying mathematics is not
particularly difficult, but enabling the student to come to grips with a new level of abstrac-
tion remains the most challenging aspect of the course. To this end, we have included a
wide range of illustrative examples. Students should start by making sure they understand
how a concept applies to vectors in Euclidean space R™ before pressing on to less famil-
iar territory. While one could design a course that completely avoids infinite-dimensional
function spaces, we maintain that, at this level, they should be integrated into the subject
right from the start. Indeed, linear analysis and applied mathematics, including Fourier
methods, boundary value problems, partial differential equations, numerical solution tech-
niques, signal processing, control theory, modern physics, especially quantum mechanics,
and many, many other fields, both pure and applied, all rely on basic vector space con-
structions, and so learning to deal with the full range of examples is the secret to future
success. Section 2.5 then introduces the fundamental subspaces associated with a matrix
— kernel (null space), image (column space), coimage (row space), and cokernel (left null
space) — leading to what is known as the Fundamental Theorem of Linear Algebra which
highlights the remarkable interplay between a matrix and its transpose. The role of these
spaces in the characterization of solutions to linear systems, e.g., the basic superposition
principles, is emphasized. The final Section 2.6 covers a nice application to graph theory,
in preparation for later developments.

Chapter 3 discusses general inner products and norms, using the familiar dot product
and Euclidean distance as motivational examples. Again, we develop both the finite-
dimensional and function space cases in tandem. The fundamental Cauchy-Schwarz in-
equality is easily derived in this abstract framework, and the more familiar triangle in-
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equality, for norms derived from inner products, is a simple consequence. This leads to
the definition of a general norm and the induced matrix norm, of fundamental importance
in iteration, analysis, and numerical methods. The classification of inner products on Eu-
clidean space leads to the important class of positive definite matrices. Gram matrices,
constructed out of inner products of elements of inner product spaces, are a particularly
fruitful source of positive definite and semi-definite matrices, and reappear throughout the
text. Tests for positive definiteness rely on Gaussian Elimination and the connections be-
tween the L D LT factorization of symmetric matrices and the process of completing the
square in a quadratic form. We have deferred treating complex vector spaces until the
final section of this chapter — only the definition of an inner product is not an evident
adaptation of its real counterpart.

Chapter 4 exploits the many advantages of orthogonality. The use of orthogonal and
orthonormal bases creates a dramatic speed-up in basic computational algorithms. Orthog-
onal matrices, constructed out of orthogonal bases, play a major role, both in geometry
and graphics, where they represent rigid rotations and reflections, as well as in notable
numerical algorithms. The orthogonality of the fundamental matrix subspaces leads to a
linear algebraic version of the Fredholm alternative for compatibility of linear systems. We
develop several versions of the basic Gram—Schmidt process for converting an arbitrary
basis into an orthogonal basis, used in particular to construct orthogonal polynomials and
functions. When implemented on bases of R™, the algorithm becomes the celebrated Q R
factorization of a nonsingular matrix. The final section surveys an important application to
contemporary signal and image processing: the discrete Fourier representation of a sampled
signal, culminating in the justly famous Fast Fourier Transform.

Chapter 5 is devoted to solving the most basic multivariable minimization problem:
a quadratic function of several variables. The solution is reduced, by a purely algebraic
computation, to a linear system, and then solved in practice by, for example, Gaussian
Elimination. Applications include finding the closest element of a subspace to a given
point, which is reinterpreted as the orthogonal projection of the element onto the subspace,
and results in the least squares solution to an incompatible linear system. Interpolation
of data points by polynomials, trigonometric function, splines, etc., and least squares ap-
proximation of discrete data and continuous functions are thereby handled in a common
conceptual framework.

Chapter 6 covers some striking applications of the preceding developments in mechanics
and electrical circuits. We introduce a general mathematical structure that governs a wide
range of equilibrium problems. To illustrate, we start with simple mass—spring chains,
followed by electrical networks, and finish by analyzing the equilibrium configurations and
the stability properties of general structures. Extensions to continuous mechanical and
electrical systems governed by boundary value problems for ordinary and partial differential
equations can be found in the companion text [61].

Chapter 7 delves into the general abstract foundations of linear algebra, and includes
significant applications to geometry. Matrices are now viewed as a particular instance
of linear functions between vector spaces, which also include linear differential operators,
linear integral operators, quantum mechanical operators, and so on. Basic facts about linear
systems, such as linear superposition and the connections between the homogeneous and
inhomogeneous systems, which were already established in the algebraic context, are shown
to be of completely general applicability. Linear functions and slightly more general affine
functions on Euclidean space represent basic geometrical transformations — rotations,
shears, translations, screw motions, etc. — and so play an essential role in modern computer
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graphics, movies, animation, gaming, design, elasticity, crystallography, symmetry, etc.
Further, the elementary transpose operation on matrices is viewed as a particular case
of the adjoint operation on linear functions between inner product spaces, leading to a
general theory of positive definiteness that characterizes solvable quadratic minimization
problems, with far-reaching consequences for modern functional analysis, partial differential
equations, and the calculus of variations, all fundamental in physics and mechanics.

Chapters 8-10 are concerned with eigenvalues and their many applications, includ-
ing data analysis, numerical methods, and linear dynamical systems, both continuous
and discrete. After motivating the fundamental definition of eigenvalue and eigenvector
through the quest to solve linear systems of ordinary differential equations, the remainder
of Chapter 8 develops the basic theory and a range of applications, including eigenvector
bases, diagonalization, the Schur decomposition, and the Jordan canonical form. Practical
computational schemes for determining eigenvalues and eigenvectors are postponed until
Chapter 9. The final two sections cover the singular value decomposition and principal
component analysis, of fundamental importance in modern statistical analysis and data
science.

Chapter 9 employs eigenvalues to analyze discrete dynamics, as governed by linear iter-
ative systems. The formulation of their stability properties leads us to define the spectral
radius and further develop matrix norms. Section 9.3 contains applications to Markov
chains arising in probabilistic and stochastic processes. We then discuss practical alter-
natives to Gaussian Elimination for solving linear systems, including the iterative Jacobi,
Gauss—Seidel, and Successive Over—Relaxation (SOR) schemes, as well as methods for com-
puting eigenvalues and eigenvectors including the Power Method and its variants, and the
striking @) R algorithm, including a new proof of its convergence. Section 9.6 introduces
more recent semi-direct iterative methods based on Krylov subspaces that are increasingly
employed to solve the large sparse linear systems arising in the numerical solution of partial
differential equations and elsewhere: Arnoldi and Lanczos methods, Conjugate Gradients
(CG), the Full Orthogonalization Method (FOM), and the Generalized Minimal Residual
Method (GMRES). The chapter concludes with a short introduction to wavelets, a power-
ful modern alternative to classical Fourier analysis, now used extensively throughout signal
processing and imaging science.

The final Chapter 10 applies eigenvalues to linear dynamical systems modeled by systems
of ordinary differential equations. After developing basic solution techniques, the focus
shifts to understanding the qualitative properties of solutions and particularly the role
of eigenvalues in the stability of equilibria. The two-dimensional case is discussed in full
detail, culminating in a complete classification of the possible phase portraits and stability
properties. Matrix exponentials are introduced as an alternative route to solving first order
homogeneous systems, and are also applied to solve the inhomogeneous version, as well as
to geometry, symmetry, and group theory. Our final topic is second order linear systems,
which model dynamical motions and vibrations in mechanical structures and electrical
circuits. In the absence of frictional damping and instabilities, solutions are quasiperiodic
combinations of the normal modes. We finish by briefly discussing the effects of damping
and of periodic forcing, including its potentially catastrophic role in resonance.

Course Outlines

Our book includes far more material than can be comfortably covered in a single semester;
a full year’s course would be able to do it justice. If you do not have this luxury, several



Preface i1

possible semester and quarter courses can be extracted from the wealth of material and
applications.

First, the core of basic linear algebra that all students should know includes the following
topics, which are indexed by the section numbers where they appear:

e Matrices, vectors, Gaussian Elimination, matrix factorizations, Forward and
Back Substitution, inverses, determinants: 1.1-1.6, 1.8-1.9.

e Vector spaces, subspaces, linear independence, bases, dimension: 2.1-2.5.

e Inner products and their associated norms: 3.1-3.3.

e Orthogonal vectors, bases, matrices, and projections: 4.1-4.4.

e Positive definite matrices and minimization of quadratic functions: 3.4-3.5, 5.2

e Linear functions and linear and affine transformations: 7.1-7.3.

e Eigenvalues and eigenvectors: 8.2-8.3.

e Linear iterative systems: 9.1-9.2.

With these in hand, a variety of thematic threads can be extracted, including:

e Minimization, least squares, data fitting and interpolation: 4.5, 5.3-5.5.
e Dynamical systems: 8.4, 8.6 (Jordan canonical form), 10.1-10.4.

e Engineering applications: Chapter 6, 10.1-10.2, 10.5-10.6.

e Data analysis: 5.3-5.5, 8.5, 8.7-8.8.

e Numerical methods: 8.6 (Schur decomposition), 8.7, 9.1-9.2, 9.4-9.6.

e Signal processing: 3.6, 5.6, 9.7.

e Probabilistic and statistical applications: 8.7-8.8, 9.3.

e Theoretical foundations of linear algebra: Chapter 7.

For a first semester or quarter course, we recommend covering as much of the core
as possible, and, if time permits, at least one of the threads, our own preference being
the material on structures and circuits. One option for streamlining the syllabus is to
concentrate on finite-dimensional vector spaces, bypassing the function space material,
although this would deprive the students of important insight into the full scope of linear
algebra.

For a second course in linear algebra, the students are typically familiar with elemen-
tary matrix methods, including the basics of matrix arithmetic, Gaussian Elimination,
determinants, inverses, dot product and Euclidean norm, eigenvalues, and, often, first or-
der systems of ordinary differential equations. Thus, much of Chapter 1 can be reviewed
quickly. On the other hand, the more abstract fundamentals, including vector spaces, span,
linear independence, basis, and dimension are, in our experience, still not fully mastered,
and one should expect to spend a significant fraction of the early part of the course covering
these essential topics from Chapter 2 in full detail. Beyond the core material, there should
be time for a couple of the indicated threads depending on the audience and interest of the
instructor.

Similar considerations hold for a beginning graduate level course for scientists and engi-
neers. Here, the emphasis should be on applications required by the students, particularly
numerical methods and data analysis, and function spaces should be firmly built into the
class from the outset. As always, the students’ mastery of the first five sections of Chapter 2
remains of paramount importance.
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Comments on Individual Chapters

Chapter 1: On the assumption that the students have already seen matrices, vectors,
Gaussian Elimination, inverses, and determinants, most of this material will be review and
should be covered at a fairly rapid pace. On the other hand, the L U decomposition and the
emphasis on solution techniques centered on Forward and Back Substitution, in contrast to
impractical schemes involving matrix inverses and determinants, might be new. Sections
1.7, on the practical/numerical aspects of Gaussian Elimination, is optional.

Chapter 2: The crux of the course. A key decision is whether to incorporate infinite-
dimensional vector spaces, as is recommended and done in the text, or to have an abbre-
viated syllabus that covers only finite-dimensional spaces, or, even more restrictively, only
R™ and subspaces thereof. The last section, on graph theory, can be skipped unless you
plan on covering Chapter 6 and (parts of) the final sections of Chapters 9 and 10.

Chapter 8: Inner products and positive definite matrices are essential, but, under time
constraints, one can delay Section 3.3, on more general norms, as they begin to matter
only in the later stages of Chapters 8 and 9. Section 3.6, on complex vector spaces, can
be deferred until the discussions of complex eigenvalues, complex linear systems, and real
and complex solutions to linear iterative and differential equations; on the other hand, it
is required in Section 5.6, on discrete Fourier analysis.

Chapter 4: The basics of orthogonality, as covered in Sections 4.1-4.4, should be an
essential part of the students’ training, although one can certainly omit the final subsection
in Sections 4.2 and 4.3. The final section, on orthogonal polynomials, is optional.

Chapter 5: We recommend covering the solution of quadratic minimization problems
and at least the basics of least squares. The applications — approximation of data, interpo-
lation and approximation by polynomials, trigonometric functions, more general functions,
and splines, etc., are all optional, as is the final section on discrete Fourier methods and
the Fast Fourier Transform.

Chapter 6 provides a welcome relief from the theory for the more applied students in the
class, and is one of our favorite parts to teach. While it may well be skipped, the material
is particularly appealing for a class with engineering students. One could specialize to just
the material on mass/spring chains and structures, or, alternatively, on electrical circuits
with the connections to spectral graph theory, based on Section 2.6, and further developed
in Section 8.7.

Chapter 7: The first third of this chapter, on linear functions, linear and affine trans-
formations, and geometry, is part of the core. This remainder of the chapter recasts many
of the linear algebraic techniques already encountered in the context of matrices and vec-
tors in Euclidean space in a more general abstract framework, and could be skimmed over
or entirely omitted if time is an issue, with the relevant constructions introduced in the
context of more concrete developments, as needed.

Chapter 8: Eigenvalues are absolutely essential. The motivational material based on
solving systems of differential equations in Section 8.1 can be skipped over. Sections 8.2
and 8.3 are the heart of the matter. Of the remaining sections, the material on sym-
metric matrices should have the highest priority, leading to singular values and principal
component analysis and a variety of numerical methods.
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Chapter 9: If time permits, the first two sections are well worth covering. For a numeri-
cally oriented class, Sections 9.4-9.6 would be a priority, whereas Section 9.3 studies Markov
processes — an appealing probabilistic/stochastic application. The chapter concludes with
an optional introduction to wavelets, which is somewhat off-topic, but nevertheless serves
to combine orthogonality and iterative methods in a compelling and important modern
application.

Chapter 10 is devoted to linear systems of ordinary differential equations, their solutions,
and their stability properties. The basic techniques will be a repeat to students who have
already taken an introductory linear algebra and ordinary differential equations course, but
the more advanced material will be new and of interest.

Changes from the First Edition

For the Second Edition, we have revised and edited the entire manuscript, correcting all
known errors and typos, and, we hope, not introducing any new ones! Some of the existing
material has been rearranged. The most significant change is having moved the chapter on
orthogonality to before the minimization and least squares chapter, since orthogonal vec-
tors, bases, and subspaces, as well as the Gram—Schmidt process and orthogonal projection
play an absolutely fundamental role in much of the later material. In this way, it is easier
to skip over Chapter 5 with minimal loss of continuity. Matrix norms now appear much
earlier in Section 3.3, since they are employed in several other locations. The second major
reordering is to switch the chapters on iteration and dynamics, in that the former is more
attuned to linear algebra, while the latter is oriented towards analysis. In the same vein,
space constraints compelled us to delete the last chapter of the first edition, which was on
boundary value problems. Although this material serves to emphasize the importance of
the abstract linear algebraic techniques developed throughout the text, now extended to
infinite-dimensional function spaces, the material contained therein can now all be found
in the first author’s Springer Undergraduate Text in Mathematics, Introduction to Partial
Differential Fquations, [61], with the exception of the subsection on splines, which now
appears at the end of Section 5.5.
There are several significant additions:

e In recognition of their increasingly essential role in modern data analysis and statis-
tics, Section 8.7, on singular values, has been expanded, continuing into the new
Section 8.8, on Principal Component Analysis, which includes a brief introduction
to basic statistical data analysis.

e We have added a new Section 9.6, on Krylov subspace methods, which are increasingly
employed to devise effective and efficient numerical solution schemes for sparse linear
systems and eigenvalue calculations.

e Section 8.4 introduces and characterizes invariant subspaces, in recognition of their
importance to dynamical systems, both finite- and infinite-dimensional, as well as
linear iterative systems, and linear control systems. (Much as we would have liked
also to add material on linear control theory, space constraints ultimately interfered.)

e We included some basics of spectral graph theory, of importance in contemporary
theoretical computer science, data analysis, networks, imaging, etc., starting in Sec-
tion 2.6 and continuing to the graph Laplacian, introduced, in the context of elec-
trical networks, in Section 6.2, along with its spectrum — eigenvalues and singular
values — in Section 8.7.
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e We decided to include a short Section 9.7, on wavelets. While this perhaps fits more
naturally with Section 5.6, on discrete Fourier analysis, the convergence proofs rely
on the solution to an iterative linear system and hence on preceding developments
in Chapter 9.

e A number of new exercises have been added, in the new sections and also scattered
throughout the text.

Following the advice of friends, colleagues, and reviewers, we have also revised some
of the less standard terminology used in the first edition to bring it closer to the more
commonly accepted practices. Thus “range” is now “image” and “target space” is now
“codomain”. The terms “special lower/upper triangular matrix” are now “lower/upper
unitriangular matrix”, thus drawing attention to their unipotence. On the other hand, the
term “regular” for a square matrix admitting an LU factorization has been kept, since
there is really no suitable alternative appearing in the literature. Finally, we decided to
retain our term “complete” for a matrix that admits a complex eigenvector basis, in lieu of
“diagonalizable” (which depends upon whether one deals in the real or complex domain),
“semi-simple”, or “perfect”. This choice permits us to refer to a “complete eigenvalue”,
independent of the underlying status of the matrix.

Exercises and Software

Exercises appear at the end of almost every subsection, and come in a medley of flavors.
Each exercise set starts with some straightforward computational problems to test students’
comprehension and reinforce the new techniques and ideas. Ability to solve these basic
problems should be thought of as a minimal requirement for learning the material. More
advanced and theoretical exercises tend to appear later on in the set. Some are routine,
but others are challenging computational problems, computer-based exercises and projects,
details of proofs that were not given in the text, additional practical and theoretical results
of interest, further developments in the subject, etc. Some will challenge even the most
advanced student.
As a guide, some of the exercises are marked with special signs:

¢ indicates an exercise that is used at some point in the text, or is important for further
development of the subject.

@ indicates a project — usually an exercise with multiple interdependent parts.

& indicates an exercise that requires (or at least strongly recommends) use of a computer.
The student could either be asked to write their own computer code in, say, MATLAB,
MATHEMATICA, MAPLE, etc., or make use of pre-existing software packages.

& = & + O indicates a computer project.

Advice to instructors: Don’t be afraid to assign only a couple of parts of a multi-part
exercise. We have found the True/False exercises to be a particularly useful indicator of
a student’s level of understanding. Emphasize to the students that a full answer is not
merely a T or F, but must include a detailed explanation of the reason, e.g., a proof, or a
counterexample, or a reference to a result in the text, etc.
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Conventions and Notations

Note: A full symbol and notation index can be found at the end of the book.

Equations are numbered consecutively within chapters, so that, for example, (3.12)
refers to the 12th equation in Chapter 3. Theorems, Lemmas, Propositions, Definitions,
and Examples are also numbered consecutively within each chapter, using a common index.
Thus, in Chapter 1, Lemma 1.2 follows Definition 1.1, and precedes Theorem 1.3 and
Example 1.4. We find this numbering system to be the most conducive for navigating
through the book.

References to books, papers, etc., are listed alphabetically at the end of the text, and
are referred to by number. Thus, [61] indicates the 615t listed reference, which happens to
be the first author’s partial differential equations text.

Q.E.D. is placed at the end of a proof, being the abbreviation of the classical Latin phrase
quod erat demonstrandum, which can be translated as “what was to be demonstrated”.

R,C,Z,Q denote, respectively, the real numbers, the complex numbers, the integers,
and the rational numbers. We use e ~ 2.71828182845904 ... to denote the base of the
natural logarithm, m = 3.14159265358979 ... for the area of a circle of unit radius, and i
to denote the imaginary unit, i.e., one of the two square roots of —1, the other being —1i.
The absolute value of a real number x is denoted by |z |; more generally, | z| denotes the
modulus of the complex number z.

We consistently use boldface lowercase letters, e.g., v,x,a, to denote vectors (almost
always column vectors), whose entries are the corresponding non-bold subscripted letter:
vy, &;,a,, etc. Matrices are denoted by ordinary capital letters, e.g., A,C, K, M — but
not all such letters refer to matrices; for instance, V' often refers to a vector space, L to
a linear function, etc. The entries of a matrix, say A, are indicated by the corresponding

subscripted lowercase letters, a;; being the entry in its ¢*" row and j*h column.

We use the standard notations

a; = a0y - 0Q
1

n n
Zai:a1+a2+~--+an, s
i=1 i=

for the sum and product of the quantities aq,...,a,. We use max and min to denote

maximum and minimum, respectively, of a closed subset of R. Modular arithmetic is
indicated by j = kmodn, for j, k,n € Z with n > 0, to mean j — k is divisible by n.

We use S = { f|C} to denote a set, where f is a formula for the members of the
set and C is a list of conditions, which may be empty, in which case it is omitted. For
example, { |0 < z < 1} means the closed unit interval from 0 to 1, also denoted [0, 1],
while {az? + bz + c¢|a,b,c € R} is the set of real quadratic polynomials, and {0} is the
set consisting only of the number 0. We write z € S to indicate that z is an element of the
set S, while y &€ S says that y is not an element. The cardinality, or number of elements,
in the set A, which may be infinite, is denoted by #A. The union and intersection of the
sets A, B are respectively denoted by A U B and A N B. The subset notation A C B
includes the possibility that the sets might be equal, although for emphasis we sometimes
write A C B, while A C B specifically implies that A # B. We can also write A C B as
B> A Weuse B\A={z|z € B,z ¢ A} to denote the set-theoretic difference, meaning
all elements of B that do not belong to A.
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An arrow — is used in two senses: first, to indicate convergence of a sequence: =, — x*
as n — oo; second, to indicate a function, so f: X — Y means that f defines a function
from the domain set X to the codomain set Y, written y = f(z) € Y for x € X. We use
= to emphasize when two functions agree everywhere, so f(z) = 1 means that f is the
constant function, equal to 1 at all values of . Composition of functions is denoted f og.

Angles are always measured in radians (although occasionally degrees will be mentioned
in descriptive sentences). All trigonometric functions, cos, sin, tan, sec, etc., are evaluated
on radians. (Make sure your calculator is locked in radian mode!)

As usual, we denote the natural exponential function by e*. We always use logz for
its inverse — the natural (base e) logarithm (never the ugly modern version In ), while
log, x = log x/loga is used for logarithms with base a.

We follow the reference tome [59] (whose mathematical editor is the first author’s father)
and use ph z for the phase of a complex number. We prefer this to the more common term
“argument”, which is also used to refer to the argument of a function f(z), while “phase”
is completely unambiguous and hence to be preferred.

We will employ a variety of standard notations for derivatives. In the case of ordinary

du
derivatives, the most basic is the Leibnizian notation e for the derivative of uw with
7

respect to x; an alternative is the Lagrangian prime notation u’. Higher order derivatives
2 m

d“u U
are similar, with «” denoting el while ©(™ denotes the nt® order derivative oo If the
x x

function depends on time, ¢, instead of space, x, then we use the Newtonian dot notation,

. du . P Ou Ou O 0"
G = ditL’ U = Wg We use the full Leibniz notation 877; ) 677: ) 67512& ) Wgt

derivatives of functions of several variables. All functions are assumed to be sufficiently
smooth that any indicated derivatives exist and mixed partial derivatives are equal, cf. [2].

, for partial

b
Definite integrals are denoted by / f(x)dx, while / f(x)dx is the corresponding

indefinite integral or anti-derivative. In general, limits are denoted by lim , while lim+
rT—y Ty
and lim are used to denote the two one-sided limits in R.
Tr—yY
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History and Biography

Mathematics is both a historical and a social activity, and many of the algorithms, theo-
rems, and formulas are named after famous (and, on occasion, not-so-famous) mathemati-
cians, scientists, engineers, etc. — usually, but not necessarily, the one(s) who first came up
with the idea. We try to indicate first names, approximate dates, and geographic locations
of most of the named contributors. Readers who are interested in additional historical de-
tails, complete biographies, and, when available, portraits or photos, are urged to consult
the wonderful University of St. Andrews MacTutor History of Mathematics archive:

http://www-history.mcs.st-and.ac.uk

Some Final Remarks

To the student: You are about to learn modern applied linear algebra. We hope you
enjoy the experience and profit from it in your future studies and career. (Indeed, we
recommended holding onto this book to use for future reference.) Please send us your
comments, suggestions for improvement, along with any errors you might spot. Did you
find our explanations helpful or confusing? Were enough examples included in the text?
Were the exercises of sufficient variety and at an appropriate level to enable you to learn
the material?

To the instructor: Thank you for adopting our text! We hope you enjoy teaching from
it as much as we enjoyed writing it. Whatever your experience, we want to hear from you.
Let us know which parts you liked and which you didn’t. Which sections worked and which
were less successful. Which parts your students enjoyed, which parts they struggled with,
and which parts they disliked. How can we improve it?

Like every author, we sincerely hope that we have written an error-free text. Indeed, all
known errors in the first edition have been corrected here. On the other hand, judging from
experience, we know that, no matter how many times you proofread, mistakes still manage
to sneak through. So we ask your indulgence to correct the few (we hope) that remain.
Even better, email us with your questions, typos, mathematical errors and obscurities,
comments, suggestions, etc.

The second edition’s dedicated web site

http://www.math.umn.edu/~olver/ala2.html

will contain a list of known errors, commentary, feedback, and resources, as well as a
number of illustrative MATLAB programs that we’ve used when teaching the course. Links
to the Selected Solutions Manual will also be posted there.


http://www-history.mcs.st-and.ac.uk
http://www.math.umn.edu/%E2%88%BColver/ala2.html
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Chapter 1
Linear Algebraic Systems

Linear algebra is the core of modern applied mathematics. Its humble origins are to be
found in the need to solve “elementary” systems of linear algebraic equations. But its
ultimate scope is vast, impinging on all of mathematics, both pure and applied, as well
as numerical analysis, statistics, data science, physics, engineering, mathematical biology,
financial mathematics, and every other discipline in which mathematical methods are re-
quired. A thorough grounding in the methods and theory of linear algebra is an essential
prerequisite for understanding and harnessing the power of mathematics throughout its
multifaceted applications.

In the first chapter, our focus will be on the most basic method for solving linear
algebraic systems, known as Gaussian Elimination in honor of one of the all-time mathe-
matical greats, the early nineteenth-century German mathematician Carl Friedrich Gauss,
although the method appears in Chinese mathematical texts from around 150 CE, if not
earlier, and was also known to Isaac Newton. Gaussian Elimination is quite elementary,
but remains one of the most important algorithms in applied (as well as theoretical) math-
ematics. Our initial focus will be on the most important class of systems: those involving
the same number of equations as unknowns — although we will eventually develop tech-
niques for handling completely general linear systems. While the former typically have
a unique solution, general linear systems may have either no solutions or infinitely many
solutions. Since physical models require existence and uniqueness of their solution, the sys-
tems arising in applications often (but not always) involve the same number of equations
as unknowns. Nevertheless, the ability to confidently handle all types of linear systems
is a basic prerequisite for further progress in the subject. In contemporary applications,
particularly those arising in numerical solutions of differential equations, in signal and im-
age processing, and in contemporary data analysis, the governing linear systems can be
huge, sometimes involving millions of equations in millions of unknowns, challenging even
the most powerful supercomputer. So, a systematic and careful development of solution
techniques is essential. Section 1.7 discusses some of the practical issues and limitations in
computer implementations of the Gaussian Elimination method for large systems arising
in applications.

Modern linear algebra relies on the basic concepts of scalar, vector, and matrix, and
so we must quickly review the fundamentals of matrix arithmetic. Gaussian Elimination
can be profitably reinterpreted as a certain matrix factorization, known as the (permuted)
LU decomposition, which provides valuable insight into the solution algorithms. Matrix
inverses and determinants are also discussed in brief, primarily for their theoretical prop-
erties. As we shall see, formulas relying on the inverse or the determinant are extremely
inefficient, and so, except in low-dimensional or highly structured environments, are to
be avoided in almost all practical computations. In the theater of applied linear algebra,
Gaussian Elimination and matrix factorization are the stars, while inverses and determi-
nants are relegated to the supporting cast.

1.1 Solution of Linear Systems

Gaussian Elimination is a simple, systematic algorithm to solve systems of linear equations.
It is the workhorse of linear algebra, and, as such, of absolutely fundamental importance
© Springer International Publishing AG, part of Springer Nature 2018 1
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2 1 Linear Algebraic Systems

in applied mathematics. In this section, we review the method in the most important case,
in which there is the same number of equations as unknowns. The general situation will
be deferred until Section 1.8.

To illustrate, consider an elementary system of three linear equations

T+2y+ 2z =2,
22 +6y+2=T1, (1.1)
r+y+4z=3,

in three unknowns x,y, z. Linearity® refers to the fact that the unknowns only appear to
the first power, and there are no product terms like 2y or xy z. The basic solution method
is to systematically employ the following fundamental operation:

1B shsina i Oorstatasl =- 88 Add a multiple of one equation to another equation.

Before continuing, you might try to convince yourself that this operation doesn’t change
the solutions to the system. Our goal is to judiciously apply the operation and so be led to
a much simpler linear system that is easy to solve, and, moreover, has the same solutions
as the original. Any linear system that is derived from the original system by successive
application of such operations will be called an equivalent system. By the preceding remark,
equivalent linear systems have the same solutions.

The systematic feature is that we successively eliminate the variables in our equations
in order of appearance. We begin by eliminating the first variable, x, from the second
equation. To this end, we subtract twice the first equation from the second, leading to the
equivalent system

r+2y+z=2,
2y —z =3, (1.2)
r+y+4z=3.
Next, we eliminate x from the third equation by subtracting the first equation from it:
T+2y+z2 =2,
2y —z =3, (1.3)
—y+3z=1.

The equivalent system (1.3) is already simpler than the original (1.1). Notice that the
second and third equations do not involve = (by design) and so constitute a system of two
linear equations for two unknowns. Moreover, once we have solved this subsystem for y
and z, we can substitute the answer into the first equation, and we need only solve a single
linear equation for x.

We continue on in this fashion, the next phase being the elimination of the second
variable, y, from the third equation by adding % the second equation to it. The result is

rT+2y+z2=2,
2y —z =3, (1.4)

5,_5

2% = 2

which is the simple system we are after. It is in what is called triangular form, which means
that, while the first equation involves all three variables, the second equation involves only
the second and third variables, and the last equation involves only the last variable.

f The “official” definition of linearity will be deferred until Chapter 7.
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Any triangular system can be straightforwardly solved by the method of Back Substi-
tution. As the name suggests, we work backwards, solving the last equation first, which
requires that z = 1. We substitute this result back into the penultimate equation, which
becomes 2y — 1 = 3, with solution y = 2. We finally substitute these two values for y and
z into the first equation, which becomes = + 5 = 2, and so the solution to the triangular
system (1.4) is

= -3, y =2, z=1. (1.5)

Moreover, since we used only our basic linear system operation to pass from (1.1) to the
triangular system (1.4), this is also the solution to the original system of linear equations,
as you can check. We note that the system (1.1) has a unique — meaning one and only
one — solution, namely (1.5).

And that, barring a few minor complications that can crop up from time to time, is all
that there is to the method of Gaussian Elimination! It is extraordinarily simple, but its
importance cannot be overemphasized. Before exploring the relevant issues, it will help to
reformulate our method in a more convenient matrix notation.

Exercises

1.1.1. Solve the following systems of linear equations by reducing to triangular form and then
using Back Substitution.

p+q—r=20, 2u —v+ 2w = 2,
@ "V ) SMTVTY () apogsr=3, (a) F3w=1
- r=3, —u—v+3w=1,

Y 2y =3 3u—20=p5 P4
—p—q=F6; 3u—2w=1;
T+ z—2w= -3, 3r; +x9 =1,

511 +3x9 — w3 =9,
(e) 32y +22y —23=5,  (f)
T+ Ty + x93 =—1;

20 —y+2z —w = -5, ()m1—|—3x2—|—m3:1,
by —dzt2w=2 & my 43wyt =1,
z+3y+2z—w=1; Tg+3xy = 1.

1.1.2. How should the coeflicients a, b, and c be chosen so that the system ax + by + cz = 3,
ar—y—+cz=1, ©+by— cz =2, has the solution z =1,y =2 and z = —17

© 1.1.3. The system 2z = —6, —4x + 3y = 3,z + 4y — z = 7, is in lower triangular form.

(a) Formulate a method of Forward Substitution to solve it. (b) What happens if you
reduce the system to (upper) triangular form using the algorithm in this section?

(¢) Devise an algorithm that uses our linear system operation to reduce a system to lower
triangular form and then solve it by Forward Substitution. (d) Check your algorithm by
applying it to one or two of the systems in Exercise 1.1.1. Are you able to solve them in all
cases?

1.2 Matrices and Vectors

A matriz is a rectangular array of numbers. Thus,



4 1 Linear Algebraic Systems

are all examples of matrices. We use the notation

Ay Gpo A1n
a a e a
21 22 2n
R (L6)
aml a‘m2 amn

for a general matrix of size m x n (read “m by n”), where m denotes the number of rows in
A and n denotes the number of columns. Thus, the preceding examples of matrices have
respective sizes 2 X 3,4 x 2,1 x 3, 2 x 1, and 2 x 2. A matrix is square if m = n, i.e., it
has the same number of rows as columns. A column vector is an m x 1 matrix, while a row
vector is a 1 X n matrix. As we shall see, column vectors are by far the more important
of the two, and the term “vector” without qualification will always mean “column vector”.
A 1 x 1 matrix, which has but a single entry, is both a row and a column vector.

The number that lies in the ith row and the jt® column of A is called the (i,j) entry
of A, and is denoted by a;;j. The row index always appears first and the column index

second.” Two matrices are equal, A = B, if and only if they have the same size, say m x n,

and all their entries are the same: a;; = bij fori=1,...,mand j=1,...,n.
A general linear system of m equations in n unknowns will take the form
Ay &y +ap Ty + o+ ap, T, = by,
(g1 Ty + Qoo Ty + -+ + ay, T, = by,
(1.7)
Cpp1 Tq + Qoo+ -+ +a,,, T, =0b,,.

As such, it is composed of three basic ingredients: the m X n coefficient matriz A, with
Ly
Lo

entries a;; as in (1.6), the column vector x = : containing the unknowns, and

by Ty
by
the column vector b = . containing right-hand sides. In our previous example,

r+2y+z =2,
2x+6y+ 2z =7, the coefficient matrix A =
r+y+4z=23,
from the coefficients of the variables appearing in the equations; if a variable does not
x

appear in an equation, the corresponding matrix entry is 0. The vector x = | y | lists
z

can be filled in, entry by entry,

= N
— o N
>~ =

2
the variables, while the entries of b= | 7 | are the right-hand sides of the equations.
3

T In tensor analysis, [1], a sub- and super-script notation is adopted, with aé- denoting the (3, j)
entry of the matrix A. This has certain advantages, but, to avoid possible confusion with powers,
we shall stick with the simpler subscript notation throughout this text.
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Remark. We will consistently use bold face lower case letters to denote vectors, and
ordinary capital letters to denote general matrices.

Exercises

-2 0 1 3
1.2.1. Let A= (1 2 7 5). (a) What is the size of A? (b) What is its (2, 3) entry?
6 -6 -3 4

(c) (3,1) entry? (d) 15t row? (e) 22d column?

1.2.2. Write down examples of (a) a 3 x 3 matrix; (b) a 2 x 3 matrix; (¢) a matrix with 3 rows
and 4 columns; (d) a row vector with 4 entries; (e) a column vector with 3 entries;
(f) a matrix that is both a row vector and a column vector.

. . T +y Tr—z 1 0 ?
1.2.3. For which values of z,y, z, w are the matrices <y Tw x4 2w> and (2 1 equal?

1.2.4. For each of the systems in Exercise 1.1.1, write down the coefficient matrix A and the
vectors x and b.

1.2.5. Write out and solve the linear systems corresponding to the indicated matrix, vector of

: . (1 41 (= _ (-1,
unknowns, and right-hand side. (a) A = (2 3), X = (y)’ b= (_3),

1 0 1 U —1 3 0 -1
(b)A_(l i o),x_(v),b_(l); <C)A_(2 o 0),
01 1 w 2 1 1 -3

K31 1 —
x:(%),b:(o); @az|1 012
T3 1

Matrix Arithmetic

. b=

E ne 8
Tl = O

Matrix arithmetic involves three basic operations: matrix addition, scalar multiplication,
and matriz multiplication. First we define addition of matrices. You are allowed to add
two matrices only if they are of the same size, and matrix addition is performed entry by

entry. For example,
1 2 3 =5 4 -3
(1 0)+(2 1)_(1 1>'

Therefore, if A and B are m x n matrices, their sum C' = A+ B is the m x n matrix whose
entries are given by Cij = Gy +bij fori=1,...,mand j =1,...,n. When defined, matrix
addition is commutative, A + B = B + A, and associative, A+ (B+ C) = (A+ B) + C,
just like ordinary addition.

A scalar is a fancy name for an ordinary number — the term merely distinguishes it
from a vector or a matrix. For the time being, we will restrict our attention to real scalars
and matrices with real entries, but eventually complex scalars and complex matrices must
be dealt with. We will consistently identify a scalar ¢ € R with the 1 x 1 matrix (¢) in
which it is the sole entry, and so will omit the redundant parentheses in the latter case.
Scalar multiplication takes a scalar ¢ and an m x n matrix A and computes the m x n
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matrix B = ¢ A by multiplying each entry of A by c¢. For example,

(a0)-(50)

In general, b,; = ca,; for i = 1,...,m and j = 1,...,n. Basic properties of scalar
multiplication are summarized at the end of this section.

Finally, we define matrixz multiplication. First, the product of a row vector a and a
column vector x having the same number of entries is the scalar or 1 x 1 matrix defined
by the following rule:

Ty

T, n
ax=(a;ay...0,) | . [=az;+ayzy+ - ta,z,= g ay, Ty, (1.8)

: k=1

x

n

More generally, if A is an m X n matrix and B is an n X p matrix, so that the number of
columns in A equals the number of rows in B, then the matrix product C' = A B is defined
as the m x p matrix whose (i, j) entry equals the vector product of the ith row of A and
the jtt column of B. Therefore,

k=1

Note that our restriction on the sizes of A and B guarantees that the relevant row and
column vectors will have the same number of entries, and so their product is defined.

For example, the product of the coefficient matrix A and vector of unknowns x for our
original system (1.1) is given by

1 21 T r+2y+=z
Ax=12 6 1 y|l=12x+6y+=z2
1 1 4 z r+y+4z

The result is a column vector whose entries reproduce the left-hand sides of the original
linear system! As a result, we can rewrite the system

Ax=b (1.10)

as an equality between two column vectors. This result is general; a linear system (1.7)
consisting of m equations in n unknowns can be written in the matrix form (1.10), where A
is the m x n coefficient matrix (1.6), x is the n x 1 column vector of unknowns, and b is the
m %X 1 column vector containing the right-hand sides. This is one of the principal reasons
for the non-evident definition of matrix multiplication. Component-wise multiplication of
matrix entries turns out to be almost completely useless in applications.

Now, the bad news. Matrix multiplication is not commutative — that is, BA is not
necessarily equal to A B. For example, BA may not be defined even when A B is. Even if
both are defined, they may be different sized matrices. For example the product s = rc
of a row vector r, a 1 X n matrix, and a column vector ¢, an n x 1 matrix with the same
number of entries, is a 1 x 1 matrix, or scalar, whereas the reversed product C'= cr is an
n X n matrix. For instance,

(1 2)(3):3, whereas <g>(1 2):(3 g)
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In computing the latter product, don’t forget that we multiply the rows of the first matrix
by the columns of the second, each of which has but a single entry. Moreover, even if
the matrix products A B and B A have the same size, which requires both A and B to be
square matrices, we may still have AB # B A. For example,

1 2 01\ (-2 5 34\ (0 1\[/1 2
G 2)=(3 )G 6)-(12)G 1)

On the other hand, matrix multiplication is associative, so A(BC') = (A B) C whenever
A has size m x n, B has size n X p, and C has size p X ¢; the result is a matrix of
size m x q. The proof of associativity is a tedious computation based on the definition of
matrix multiplication that, for brevity, we omit.” Consequently, the one difference between
matrix algebra and ordinary algebra is that you need to be careful not to change the order
of multiplicative factors without proper justification.

Since matrix multiplication acts by multiplying rows by columns, one can compute the

columns in a matrix product A B by multiplying the matrix A and the individual columns
of B. For example, the two columns of the matrix product

<1—1 2) g§_<14)
2 0 =2)\ | ] 8 6

are obtained by multiplying the first matrix with the individual columns of the second:

G (o) ¢ D))

In general, if we use b, to denote the k*h column of B, then
AB=A(b, b, ... b,)=(Ab, Ab, ... Ab,), (1.11)

indicating that the £t column of their matrix product is Ab,.

There are two important special matrices. The first is the zero matriz, all of whose
entries are 0. We use O,,,,,, to denote the m x n zero matrix, often written as just O if the
size is clear from the context. The zero matrix is the additive unit, so A+ O =A=0+ A4
when O has the same size as A. In particular, we will use a bold face 0 to denote a column
vector with all zero entries, i.e., O

IxXn:*
The role of the multiplicative unit is played by the square identity matriz
100 --- 00
610 --- 00
oo1 -~ 00
I=L,={. . . .. ..
0o o0oo0o --- 10
0600 --- 01

of size n x n. The entries along the main diagonal — which runs from top left to bottom
right — are equal to 1, while the off-diagonal entries are all 0. As you can check, if A is

T A much simpler — but more abstract proof can be found in Exercise 7.1.45.
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Basic Matriz Arithmetic

Matrix Addition: Commutativity A+B=B+ A
Associativity (A+B)+C=A+(B+(C)
Zero Matrix A+0=A=0+ 4
Additive Inverse A+(-A)=0, —A=(-1A
Scalar Multiplication: Associativity c(dA) = (cd)A
e c(A+ B)=(cA)+ (¢cB
Distributivity (i +d) A) _ ((c A)) n ((d A))
Unit Scalar 1A=A
Zero Scalar 0A=0
Matrix Multiplication: Associativity (AB)C = A(BC)
e AB+C)=AB+ AC,
Distributivity (A(—i— B)C)’ —AC+BC,
Compatibility c(AB)=(cA)B=A(cB)
Identity Matrix Al =A=14
Zero Matrix AO=0, OA=0

any m xn matrix, then I A =A4= A1 . We will sometimes write the preceding equation
as just A = A = A1, since each matrix product is well-defined for exactly one size of
identity matrix.

The identity matrix is a particular example of a diagonal matriz. In general, a square
matrix A is diagonal if all its off-diagonal entries are zero: a;; = 0 for all i # j. We will
sometimes write D = diag (c,,...,¢,) for the n x n diagonal matrix with diagonal entries

1 0 0
d,; = ¢,. Thus, diag(1,3,0) refers to the diagonal matrix { 0 3 0 |, while the 4 x 4
0 0 0

X3 (3

identity matrix can be written as

1 000
I, =diag(1,1,1,1) = 8 (1) (1) 8
000 1

Let us conclude this section by summarizing the basic properties of matrix arithmetic.
In the accompanying table, A, B, C are matrices; ¢, d are scalars; O is a zero matrix; and
I is an identity matrix. All matrices are assumed to have the correct sizes so that the
indicated operations are defined.

Exercises

1.2.6.(a) Write down the 5 x 5 identity and zero matrices. (b) Write down their sum and
their product. Does the order of multiplication matter?
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1 -1 3 6 0 3 2 3
1.2.7. Consider the matrices A = [ —1 4 —-2|, B= ( 4 9 71) , C=1]1-3 —4].
3 0 6 1 2
Compute the indicated combinations where possible. (a) 34 — B, (b) AB, (c¢) BA,

(d) (A+B)C, (e) A+BC, (f) A+2CB, (g) BCB—1, (h) A2—3A+1, (i) (B—1)(C+]1).

1.2.8. Which of the following pairs of matrices commute under matrix multiplication?

SRR T

1 2 3 4
' ) . _ 5 6 7 8
1.2.9. List the diagonal entries of A = 9 10 11 12

13 14 15 16
1.2.10. Write out the following diagonal matrices: (a) diag (1,0,—1), (b) diag(2,—2,3,—3).

1.2.11. True or false: (a) The sum of two diagonal matrices of the same size is a diagonal
matrix. (b) The product is also diagonal.

© 1.2.12.(a) Show that if D = (COL g) is a 2 x 2 diagonal matrix with a # b, then the only

matrices that commute (under matrix multiplication) with D are other 2 x 2 diagonal

0 0 ¢
where a, b, ¢ are all different. (d) Answer the same question for the case when a # b = c.
(e) Prove that a matrix A commutes with an n x n diagonal matrix D with all distinct
diagonal entries if and only if A is a diagonal matrix.

1.2.13. Show that the matrix products A B and B A have the same size if and only if A and B
are square matrices of the same size.

a 0 0
matrices. (b) What if a = b7 (¢) Find all matrices that commute with D = (0 b 0) ,

0 1
1.2.15.(a) Show that, if A, B are commuting square matrices, then (A 4+ B)? = A% + 2AB + B®.
(b) Find a pair of 2 x 2 matrices A, B such that (A + B)? # A% + 2AB + B2

1.2.14. Find all matrices B that commute (under matrix multiplication) with A = (1 2).

1.2.16. Show that if the matrices A and B commute, then they necessarily are both square and
the same size.

1.2.17. Let A be an m x n matrix. What are the permissible sizes for the zero matrices
appearing in the identities AO = O and O A = O?

1.2.18. Let A be an m X n matrix and let ¢ be a scalar. Show that if cA = O, then either ¢ =0
or A=0.

1.2.19. True or false: If AB = O then either A =0 or B = O.

1.2.20. True or false: If A, B are square matrices of the same size, then
A? -~ B*=(A+ B)(A-B).

1.2.21. Prove that Av = O for every vector v (with the appropriate number of entries) if and
only if A = O is the zero matrix. Hint¢: If you are stuck, first try to find a proof when A is
a small matrix, e.g., of size 2 x 2.

1.2.22.(a) Under what conditions is the square A2 of a matrix defined? (b) Show that A and
A2 commute. (¢) How many matrix multiplications are needed to compute A™?

1.2.23. Find a nonzero matrix A # O such that A2 =0.

{ 1.2.24. Let A have a row all of whose entries are zero. (a) Explain why the product A B also
has a zero row. (b) Find an example where B A does not have a zero row.



10 1 Linear Algebraic Systems

1.2.25.(a) Find all solutions X = <§ ;j) to the matrix equation AX = I when
( > ) Find all solutions to X A = I. Are they the same?
1.2.26.(a) Find all solutions X = <i g) to the matrix equation AX = B when
A= ( ) and B = <_i 2) (b) Find all solutions to X A = B. Are they the same?

1.2.27.(a) Find all solutions X = <§ 3)) to the matrix equation AX = X B when

1 0 3 0
that the matrix equation A X = X B has a nonzero solution X # O7

A= (71 2) and B = (0 ! ) (b) Can you find a pair of nonzero matrices A # B such

1.2.28. Let A be a matrix and ¢ a scalar. Find all solutions to the matrix equation cA = 1.

{ 1.2.29. Let e be the 1 x m row vector all of whose entries are equal to 1. (a) Show that if
A is an m X n matrix, then the ith entry of the product v = e A is the j%h column sum

of A, meaning the sum of all the entries in its j*® row. (b) Let W denote the m x m

matrix whose diagonal entries are equal to — M and whose off-diagonal entries are all

equal to % . Prove that the column sums of B = W A are all zero. (¢) Check both results

1 2 -1
when A = ( 2 1 3) . Remark. If the rows of A represent experimental data
-4 5 -1

values, then the entries of % e A represent the means or averages of the data values, while
B = W A corresponds to data that has been normalized to have mean 0; see Section 8.8.

© 1.2.30. The commutator of two matrices A, B, is defined to be the matrix
C=[AB]=AB-BA. (1.12)
(a) Explain why [ A, B] is defined if and only if A and B are square matrices of the
same size. (b) Show that A and B commute under matrix multiplication if and only if
[A,B]=0. (c) Compute the commutator of the following matrices:

o (1 9 (3 8)a (s F)(5 TG (2 é %)(é § —z);

(d) Prove that the commutator is (7) Bilinear: [cA+dB,C] = ¢[A,C]+d[B,C]
and [A,¢cB+dC] = c[A,B] + d[A,C] for any scalars ¢, d; (ii) Skew-symmetric:
[A,B]=—[B,A]; (i) satisfies the the Jacobi identity:

[[AvBLO} +HC7A]7B} +[[B,C],A] =0,
for any square matrices A, B, C' of the same size.

Remark. The commutator plays a very important role in geometry, symmetry, and
quantum mechanics. See Section 10.4 as well as [54, 60, 93] for further developments.

& 1.2.31. The trace of a n x n matrix A € M, ., is defined to be the sum of its diagonal entries:

Xn

1 3 2
trA=ay;+agy+---+a,,. (a) Compute the trace of (7) (% _il))), () (:411 g _1)
(b) Prove that tr(A+ B) =tr A+ tr B. (¢) Prove that tr(AB) = tr(BA). (d) Prove that
the commutator matrix C' = AB — B A has zero trace: trC' = 0. (e) Is part (c) valid if A
has size m x n and B has size n x m? (f) Prove that tr(ABC) = tr(CAB) = tr(BCA).
On the other hand, find an example where tr(ABC') # tr(ACB).
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& 1.2.32. Prove that matrix multiplication is associative: A (BC) = (AB)C when defined.

< 1.2.33. Justify the following alternative formula for multiplying a matrix A and a column
vector x:
Ax=2,¢c) +x9Cy + -+ +x,Cp, (1.13)
where cq,...,c, are the columns of A and z,...,x, the entries of x.

© 1.2.34. The basic definition of matrix multiplication A B tells us to multiply rows of A by
columns of B. Remarkably, if you suitably interpret the operation, you can also compute
A B by multiplying columns of A by rows of B! Suppose A is an m X n matrix with columns
Cy,...,C,. Suppose B is an m x p matrix with rows ry,...,r . Then we claim that

AB=c ri+cyry+ -+ +c,1,, (1.14)
where each summand is a matrix of size m x p. (a) Verify that the particular case

1 2\ (0 -1\ _ (1 2 (0 —1 4 6\ _ (4 5
(53 5)=()o (e 9= 5) (2 8)=(55)
agrees with the usual method for computing the matrix product. (b) Use this method to

2 5
. . -2 1 1 -2 . 1 -2 0
compute the matrix products (1) ( 3 2) (1 O)’ (i1) (_3 1 2) (—? _(i) ,

3 —1 1 2 3 0
(iz7) | —1 2 1 3 —1 4 |, and verify that you get the same answer as that
1 1 -5 0 4 1

obtained by the traditional method. (¢) Explain why (1.13) is a special case of (1.14).
(d) Prove that (1.14) gives the correct formula for the matrix product.

© 1.2.35. Matriz polynomials. Let p(z) = ¢, 2" + ¢,,_4 L R ¢ T + ¢y be a polynomial
function. If A is a square matrix, we define the corresponding matriz polynomial p(A) =
e, A"+, 4 A4 ¢y A+ ¢ I; the constant term becomes a scalar multiple of the
identity matrix. For instance, if p(z) = 2? —2x+3, then p(4) = A2—2A4+3 1. (a) Write out
the matrix polynomials p(A), ¢(A) when p(z) = ® 3z +2, q(z) = 227 4+ 1. (b) Evaluate
p(A) and g(A) when A = (_1 _%
matrix polynomial corresponding to the product polynomial r(z) = p(x) q(z). (d) True or
false: If B = p(A) and C' = ¢(A), then BC = C B. Check your answer in the particular
case of part (b).

). (¢) Show that the matrix product p(A)gq(A) is the

C D
respective sizes i X k, i X [, j X k, j x I. (a) What is the size of M? (b) Write out the

1 1 1 1 1 3
block matrix M when A = , B = , C=1-2],D=1[2 0].
3 0 1 1 1 1

(¢) Show that if N = (g g) is a block matrix whose blocks have the same size as those

© 1.2.36. A block matriz has the form M = (A B) in which A, B,C, D are matrices with

A+P B+Q
C+R D+58

X Y
zZ W
MP:(AX+BZ AY + BW

CX+DZ CY+DW
a compatible block matrix P for the matrix M in part (b). Then validate the block matrix
product identity of part (d) for your chosen matrices.

of M, then M + N = ( ) , i.e., matrix addition can be done in blocks.

(d) Show that if P = ( ) has blocks of a compatible size, the matrix product is

>. Explain what “compatible” means. (e) Write down
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© 1.2.37. The matrix S is said to be a square root of the matrix A if S = A. (a) Show that

S = ;) _i) is a square root of the matrix A = <é 2) Can you find another square
root of A? (b) Explain why only square matrices can have a square root. (c¢) Find all real

square roots of the 2 x 2 identity matrix I = (é (1)> (d) Does —1 = (_(1) _?) have a

real square root?

1.3 Gaussian Elimination — Regular Case

With the basic matrix arithmetic operations in hand, let us now return to our primary
task. The goal is to develop a systematic method for solving linear systems of equations.
While we could continue to work directly with the equations, matrices provide a convenient
alternative that begins by merely shortening the amount of writing, but ultimately leads
to profound insight into the structure of linear systems and their solutions.

We begin by replacing the system (1.7) by its matrix constituents. It is convenient to
ignore the vector of unknowns, and form the augmented matrixz

ay; Qo A1p by
a a coe Gy, b

M=(Alb)=| T 7 7 o, (1.15)
Gppi Qo v Gopp b,,

which is an m X (n + 1) matrix obtained by tacking the right-hand side vector onto the
original coefficient matrix. The extra vertical line is included just to remind us that the
last column of this matrix plays a special role. For example, the augmented matrix for the
system (1.1), i.e.,

r+2y+z2=2, 1 2 1 9
2x+6y+2=17, is M=12 6 1 7. (1.16)
r+y+4z=23, 1 1 4 3

Note that one can immediately recover the equations in the original linear system from
the augmented matrix. Since operations on equations also affect their right-hand sides,
keeping track of everything is most easily done through the augmented matrix.

For the time being, we will concentrate our efforts on linear systems that have the same
number, n, of equations as unknowns. The associated coefficient matrix A is square, of
size n x n. The corresponding augmented matrix M = (A | b) then has size n x (n+ 1).

The matrix operation that assumes the role of Linear System Operation #1 is:

Elementary Row Operation #1:

Add a scalar multiple of one row of the augmented matrix to another row.

For example, if we add — 2 times the first row of the augmented matrix (1.16) to the second
row, the result is the row vector
—2(1212)+(2617)=(02 —1 3).
The result can be recognized as the second row of the modified augmented matrix
12 1|2
02 -1 13 (1.17)
11 4|3
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that corresponds to the first equivalent system (1.2). When elementary row operation #1
is performed, it is critical that the result replaces the row being added to — not the row
being multiplied by the scalar. Notice that the elimination of a variable in an equation —
in this case, the first variable in the second equation — amounts to making its entry in the
coefficient matrix equal to zero.

We shall call the (1,1) entry of the coefficient matrix the first pivot. The precise
definition of pivot will become clear as we continue; the one key requirement is that a
pivot must always be nonzero. Eliminating the first variable z from the second and third
equations amounts to making all the matrix entries in the column below the pivot equal to
zero. We have already done this with the (2,1) entry in (1.17). To make the (3,1) entry
equal to zero, we subtract (that is, add —1 times) the first row from the last row. The
resulting augmented matrix is

which corresponds to the system (1.3). The second pivot is the (2,2) entry of this matrix,
which is 2, and is the coefficient of the second variable in the second equation. Again, the
pivot must be nonzero. We use the elementary row operation of adding % of the second
row to the third row to make the entry below the second pivot equal to 0; the result is the

augmented matrix
1 2 1 2
N=[0 2 -1 3
5 5
0 0 3
1.

2
that corresponds to the triangular system (1.4). We write the final augmented matrix as

1 2 1 2
N=(U]lc), where =10 2 -1/, c=13
00
The corresponding linear system has vector form
Ux =c. (1.18)

Its coefficient matrix U is upper triangular, which means that all its entries below the
main diagonal are zero: u,; = 0 whenever ¢ > j. The three nonzero entries on its diagonal,
1,2, g, including the last one in the (3,3) slot, are the three pivots. Once the system has
been reduced to triangular form (1.18), we can easily solve it by Back Substitution.

The preceding algorithm for solving a linear system of n equations in n unknowns is
known as regular Gaussian Elimination. A square matrix A will be called regular’ if the
algorithm successfully reduces it to upper triangular form U with all non-zero pivots on the
diagonal. In other words, for regular matrices, as the algorithm proceeds, each successive
pivot appearing on the diagonal must be nonzero; otherwise, the matrix is not regular.
We then use the pivot row to make all the entries lying in the column below the pivot
equal to zero through elementary row operations. The solution is found by applying Back
Substitution to the resulting triangular system.

t Strangely, there is no commonly accepted term to describe this kind of matrix. For lack of a
better alternative, we propose to use the adjective “regular” in the sequel.
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Gaussian Elimination — Regular Case

start
for j=1ton
if my;
else for i=3j+4+1 to n

=0, stop; print “A is not regular”

set [, =m;;/m;;
add —[;; times row j of M to row i of M
next 1%
next j

end

Let us state this algorithm in the form of a program, written in a general “pseudocode”
that can be easily translated into any specific language, e.g., C++, FORTRAN, JAVA,
MAPLE, MATHEMATICA, MATLAB. In accordance with the usual programming conven-
tion, the same letter M = (m,;) will be used to denote the current augmented matrix at
each stage in the computation, keeping in mind that its entries will change as the algorithm
progresses. We initialize M = (A | b ) The final output of the program, assuming A is
regular, is the augmented matrix M = (U | c), where U is the upper triangular matrix
whose diagonal entries are the pivots, while c is the resulting vector of right-hand sides in
the triangular system Ux = c.

For completeness, let us include the pseudocode program for Back Substitution. The
input to this program is the upper triangular matrix U and the right-hand side vector c that
results from the Gaussian Elimination pseudocode program, which produces M = (U | c )
The output of the Back Substitution program is the solution vector x to the triangular
system U x = ¢, which is the same as the solution to the original linear system Ax = b.

Back Substitution

start
set z, =c¢,/u,,
for i=n—1 to 1 with increment —1
i+1

1

set v, = — | ¢; — E Ui T
27 .721

next j

end

Exercises

1.3.1. Solve the following linear systems by Gaussian Elimination. (a) (% _;> (;) = <7>,
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2 1 2 U 3
(6 LY (w)= (%), c(—l 33)(1}):(—2),
()(3 *2>(> (5) (©) -3 0) \w 7
5 3 -1 9 1 1 -1 P 0
o (1400« (24 30)-0)
1 1 1 -1 -1 3 5
p y

1 1 1 o0 1 2 -3 1 1
0 1 -1 -2 -1

=1 @3 2 1 2
0 1 3 2 1) \w

9 —1 0 1
Ol 1 o 2 3
0 1 -1 -2/ \d

1.3.2. Write out the augmented matrix for the following linear systems. Then solve the system
by first applying elementary row operations of type #1 to place the augmented matrix in
upper triangular form, followed by Back Substitution.

W Ut oO =

r—2y+2=0,
xy + 7wy =4, 3z—bw=—1, Y
(a) 9. — g =9 (b) 9 tw=8 (c) 2y — 8z = 8,
b crees 4o 45y +9z=—9.
T — 229 = —1, — 3y — =2
p+dg—2r=1, 17273 T+3y—z4w
(d) —92p—3r=—7 (6) %2—$4:2, (f) r—y+3z—w=0,
p ) —3xy +2x5 =0, y—z+4w =71,
3p—2q+2r=-L
—dzy + Ty = =5 dr —y+2=>5.

1.3.3. For each of the following augmented matrices write out the corresponding linear system
of equations. Solve the system by applying Gaussian Elimination to the augmented matrix.

2 -1 0 0 0
1 2 0 -3
3 2 2 —1 2 -1 0 1
(a) (74 -3 ’ 71>7 (b) <_; g 7;) _(15), (C) 0 —1 9 _1 1
0 0 -1 2 0

1.3.4. Which of the following matrices are regular?  (a) <2 L ), (b) (O -1 ),

14 3 9
3 —2 1 1 -2 3 _13:?3
@ =1 2 =3|, @/|-2 4 -1, (o
3 -2 5 3 -1 2 3 3 -6 1
2 3 -3 5

1.3.5. The techniques that are developed for solving linear systems are also applicable to
systems with complex coefficients, whose solutions may also be complex. Use Gaussian
Elimination to solve the following complex linear systems.

iz+(1—1)z =21,
(b) 2iy+(1+1)z=2,
—z+2iy+iz=1-2i.
1+ i)z+iy+(2+2i)z=0,
(d) (I—-i)z+2y+iz=0,
(3-3i)z+iy+(3—11i)z=6.
1.3.6.(a) Write down an example of a system of 5 linear equations in 5 unknowns with regular

diagonal coefficient matrix. (b) Solve your system. (¢) Explain why solving a system
whose coefficient matrix is diagonal is very easy.

(a) —iml—}—'(l—l— i)z, = —1,.
(I—-i)zy +zy =—31.
1-1)x+2y=1i,

© et (4 i)y=-1.

1.3.7. Find the equation of the parabola y = az? + bx + c that goes through the points
(1’ 6)7 (27 4)’ and (3’ 0)

{ 1.3.8. A linear system is called homogeneous if all the right-hand sides are zero, and so takes

the matrix form Ax = 0. Explain why the solution to a homogeneous system with regular
coefficient matrix is x = 0.
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1.3.9. Under what conditions do two 2 x 2 upper triangular matrices commute?

1.3.10. A matrix is called lower triangular if all entries above the diagonal are zero. Show that
a matrix is both lower and upper triangular if and only if it is a diagonal matrix.

$ 1.3.11. A square matrix is called strictly lower (upper) triangular if all entries on or above
(below) the main diagonal are 0. (a) Prove that every square matrix can be uniquely
written as a sum A = L + D + U, with L strictly lower triangular, D diagonal, and U
3 1 -1
strictly upper triangular. (b) Decompose A = 1 —4 2 | in this manner.
-2 0 5

$ 1.3.12. A square matrix N is called nilpotent if N* = O for some k > 1.

0 1 2
(a) Show that N = (O 0 1) is nilpotent. (b) Show that every strictly upper triangular
0 00

matrix, as defined in Exercise 1.3.11, is nilpotent. (¢) Find a nilpotent matrix which is
neither lower nor upper triangular.

$ 1.3.13. A square matrix W is called unipotent if N = W — T is nilpotent, as in Exercise 1.3.12,

so (W — 1)¥ = O for some k > 1. (a) Show that every lower or upper triangular matrix is
unipotent if and only if it is unitriangular, meaning its diagonal entries are all equal to 1.
(b) Find a unipotent matrix which is neither lower nor upper triangular.

1.3.14. A square matrix P is called idempotent if P? = P. (a) Find all 2 x 2 idempotent upper
triangular matrices. (b) Find all 2 X 2 idempotent matrices.

Elementary Matrices

A key observation is that elementary row operations can, in fact, be realized by matrix
multiplication. To this end, we introduce the first type of “elementary matrix”. (Later we
will meet two other types of elementary matrix, corresponding to the other two kinds of
elementary row operation.)

Definition 1.1. The elementary matriz associated with an elementary row operation for
m-rowed matrices is the m x m matrix obtained by applying the row operation to the
m X m identity matrix I, .

For example, applying the elementary row operation that adds — 2 times the first row to

1 00
the second row of the 3 x 3 identity matrix I = | 0 1 0 | results in the corresponding
0 0 1
1 00
elementary matrix £; = | —2 1 0 |. We claim that, if A is any 3-rowed matrix, then
0 0 1

multiplying F, A has the same effect as the given elementary row operation. For example,

1 0 0 1 21 1 2 1
-2 1 0 26 1)1=(02 -1],
0 0 1 1 1 4 11 4

which you may recognize as the first elementary row operation we used to solve our
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illustrative example. If we set

100 100 100
E=-210), E,=| 010, E=([010], (1.19)
0 0 1 -1 0 1 0 5 1

then multiplication by E; will subtract twice the first row from the second row, multipli-
cation by E, will subtract the first row from the third row, and multiplication by E; will
add % the second row to the third row — precisely the row operations used to place our
original system in triangular form. Therefore, performing them in the correct order, we
conclude that when

1 2 1 1 2 1
A=12 6 1], then E,E,ELA=U=10 2 —-1]. (1.20)
1 1 4 0 0 %
The reader is urged to check this by directly multiplying the indicated matrices. Keep in
mind that the associative property of matrix multiplication allows us to compute the above
matrix product in any convenient order:

E;E, By A= E;(Ey (B, A)) = (B3 Ey) Ey) A= (Es(Ey Ey)) A= (B3 Ey) (EyA) = -+

making sure that the overall left to right order of the matrices is maintained, since the
matrix products are usually not commutative.

In general, then, an m x m elementary matriz E of the first type will have all 1’s on the
diagonal, one nonzero entry ¢ in some off-diagonal position (7, j), with i # j, and all other
entries equal to zero. If A is any m X n matrix, then the matrix product E A is equal to
the matrix obtained from A by the elementary row operation adding ¢ times row j to row
i. (Note that the order of ¢ and j is reversed.)

To undo the operation of adding ¢ times row j to row i, we must perform the inverse
row operation that subtracts ¢ (or, equivalently, adds —c¢) times row j from row i. The
corresponding inverse elementary matriz again has 1’s along the diagonal and —c¢ in the
(1,7) slot. Let us denote the inverses of the particular elementary matrices (1.19) by L,
so that, according to our general rule,

1 0 0 100 1 0 0
L,=(2 1 0]/, L,=10 1 0], L,=10 10 (1.21)
001 101 0 -4 1
Note that the products
LB, =L,E,=LE,=1 (1.22)

yield the 3 x 3 identity matrix, reflecting the fact that the matrices represent mutually
inverse row operations. (A more thorough discussion of matrix inverses will be postponed
until Section 1.5.)

The product of the latter three elementary matrices (1.21) is equal to

1 00
L=L,L,L;=(2 1 0]. (1.23)
1 -1 1

The matrix L is called a lower unitriangular matrix, where “lower triangular” means that
all the entries above the main diagonal are 0, while “uni-”, which is short for “unipotent”
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as defined in Exercise 1.3.13, imposes the requirement that all the entries on the diag-
onal are equal to 1. Observe that the entries of L below the diagonal are the same as
the corresponding nonzero entries in the L,. This is a general fact that holds when the
lower triangular elementary matrices are multiplied in the correct order. More generally,
the following elementary consequence of the laws of matrix multiplication will be used
extensively.

Lemma 1.2. If L and L are lower triangular matrices of the same size, so is their product
LL. If they are both lower unitriangular, so is their product. Slmllarly, if U, U are upper
(uni)triangular matrices, so is their product UU.

The LU Factorization

We have almost arrived at our first important result. Let us compute the product of the
matrices L and U in (1.20), (1.23). Using associativity of matrix multiplication, equa-
tions (1.22), and the basic property of the identity matrix I, we conclude that

LU = (Ly Ly Ly) (B3 Ey By A) = Ly Ly (Ly Ey) By By A = Ly Ly LE, By A
=L,(LyEy)E\A=L1EA= (L E))A=T1A= A

In other words, we have factored the coefficient matrix A = LU into a product of a lower
unitriangular matrix L and an upper triangular matrix U with the nonzero pivots on its
main diagonal. By similar reasoning, the same holds true for any regular square matrix.

Theorem 1.3. A matrix A is regular if and only if it can be factored
A=LU, (1.24)

where L is a lower unitriangular matrix, having all 1’s on the diagonal, and U is upper
triangular with nonzero diagonal entries, which are the pivots of A. The nonzero off-
diagonal entries [;; for ¢ > j appearing in L prescribe the elementary row operations that
bring A into upper triangular form; namely, one subtracts /;; times row j from row ¢ at
the appropriate step of the Gaussian Elimination process.

In practice, to find the LU factorization of a square matrix A, one applies the regular
Gaussian Elimination algorithm to reduce A to its upper triangular form U. The entries
of L can be filled in during the course of the calculation with the negatives of the multiples
used in the elementary row operations. If the algorithm fails to be completed, which
happens whenever zero appears in any diagonal pivot position, then the original matrix is
not regular, and does not have an LU factorization.

2 1 1
Example 1.4. Let us compute the LU factorization of the matrix A = | 4 5 2
2 =20

Applying the Gaussian Elimination algorithm, we begin by adding —2 times the first row
to the second row, and then adding —1 times the first row to the third. The result is the

2 1 1
matrix | 0 3 0 |. The next step adds the second row to the third row, leading to the
-3 -1
0 3 2 1 1
upper triangular matrix U = [ 0 3 0 |, whose diagonal entries are the pivots. The

0 0 -1
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1 0 0
corresponding lower triangular matrix is L = | 2 1 0 ]; its entries lying below the
1 -1 1

main diagonal are the negatives of the multiples we used during the elimination procedure.
For instance, the (2,1) entry indicates that we added —2 times the first row to the second
row, and so on. The reader might wish to verify the resulting factorization

2 11 1 0 0 2 1 1

4 5 2| =A=LU=|[2 1 0 03 0

2 -2 0 1 -1 1 00 —1
Exercises

1.3.15. What elementary row operations do the following matrices represent? What size
matrices do they apply to?

1 0 O 0

1 0 0 1 0 O
o o 010 -3
R G L R U Y R

1.3.16. Write down the elementary matrix corresponding to the following row operations on
4 x 4 matrices: (a) Add the third row to the fourth row. (b) Subtract the fourth row
from the third row. (c) Add 3 times the last row to the first row. (d) Subtract twice the
second row from the fourth row.

1.3.17. Compute the product L Ly L, of the elementary matrices (1.21). Compare your
answer with (1.23).

1.3.18. Determine the product E5 E, E; of the elementary matrices in (1.19). Is this the same
as the product E, Ey E3? Which is easier to predict?

1.3.19.(a) Explain, using their interpretation as elementary row operations, why elementary

matrices do not generally commute: EE # E E. (b) Which pairs of the elementary
matrices listed in (1.19) commute? (¢) Can you formulate a general rule that tells in
advance whether two given elementary matrices commute?

1.3.20. Determine which of the following 3 x 3 matrices is (¢) upper triangular, (iz) upper
unitriangular, (4i¢) lower triangular, and/or (iv) lower unitriangular:

1 2 0 1 0 0 1 0 0 1 0 0 0 0 O
@ (03 2] ®m|o10| @]|[200] @0 10| ]|03 1]
0 0 -2 0 0 1 0 3 3 1 -4 1 0 1 0
. L. . . 1 3 1 3
1.3.21. Find the LU factorization of the following matrices: (a) (_1 0), (b) <3 1),
-1 1 -1 2 0 3 —1 0 0 1 0 -1
| 11 1|, @|1 31|, @] 2 =30, O] 23 2],
-1 1 2 0 1 1 1 3 2 -3 1 0
1 0 -1 0 1 1 -2 3 2 1 3 1
0 2 -1 -1 -1 2 3 0 1 4 0 1
@11 3 o 2f Wl a1 1 2f D]30 22
0 1 2 1 3 0 1 5 1 1 2 2
1

2 — 0 1 0 0 2 -1 0
1.3.22. Given the factorization A = | —6 4 1| =1-3 1 0 0 1 -1,

4 -6 7 2 -4 1)\0 0 3

explain, without computing, which elementary row operations are used to reduce A to
upper triangular form. Be careful to state the order in which they should be applied. Then
check the correctness of your answer by performing the elimination.
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1.3.23.(a) Write down a 4 x 4 lower unitriangular matrix whose entries below the diagonal
are distinct nonzero numbers. (b) Explain which elementary row operation each entry
corresponds to. (c¢) Indicate the order in which the elementary row operations should be
performed by labeling the entries 1,2,3,....

& 1.3.24. Let tq,t,,... be distinct real numbers. Find the LU factorization of the following
1 1 1 1

L1 t, by tg t
. 1 1 1 2 3
Vandermonde matrices: (a) , (b)) [t ta t3 ], () | ,2 .2 ,2 ,2
t 1y 2 2 2 ty ty 13 1
t ty 13 3 ,3 .3 3
8o 68 4
Can you spot a pattern? Test your conjecture with the 5 x 5 Vandermonde matrix.
1.3.25. Write down the explicit requirements on its entries a; j for a square matrix A to be
(a) diagonal, (b) upper triangular, (¢) upper unitriangular, (d) lower triangular,
(e) lower unitriangular.
{ 1.3.26.(a) Explain why the product of two lower triangular matrices is lower triangular.
(b) What can you say concerning the diagonal entries of the product of two lower

triangular matrices? (c¢) Explain why the product of two lower unitriangular matrices is
also lower unitriangular.

1.3.27. True or false: If A has a zero entry on its main diagonal, it is not regular.

1.3.28. In general, how many elementary row operations does one need to perform in order to
reduce a regular n X n matrix to upper triangular form?

1.3.29. Prove that if A is a regular 2 x 2 matrix, then its LU factorization is unique. In other
words, if A= LU = LU where L, L are lower unitriangular and U, U are upper triangular,
then L=L and U =1T. (The general case appears in Proposition 1.30.)

0 1

1 0

& 1.3.31. Suppose A is regular. (a) Show that the matrix obtained by multiplying each column
of A by the sign of its pivot is also regular and, moreover, has all positive pivots.
(b) Show that the matrix obtained by multiplying each row of A by the sign of its pivot is

$ 1.3.30. Prove directly that the matrix A = ( > does not have an LU factorization.

also regular and has all positive pivots. 9 2 1
(c) Check these results in the particular case A = ( 1 01 ) .
4 2 3

Forward and Back Substitution

Knowing the LU factorization of a regular matrix A enables us to solve any associated
linear system Ax = b in two easy stages:
(1) First, solve the lower triangular system

Lc=b (1.25)

for the vector ¢ by Forward Substitution. This is the same as Back Substitution, except
one solves the equations for the variables in the direct order — from first to last. Explicitly,

i—1
¢, = by, ¢ =b — Z Lijcjs for  i=2,3,...,n, (1.26)
j=1
noting that the previously computed values of ¢,,...,c,_; are used to determine c;.

(2) Second, solve the resulting upper triangular system

Ux=c (1.27)
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by Back Substitution. The values of the unknowns

c 1 -

x, = ——, 2, =—1¢ — Z ;| for i=n-1,...,2,1, (1.28)
U Uy j=i+1

are successively computed, but now in reverse order. It is worth pointing out that the

requirement that each pivot be nonzero, u,; # 0, is essential here, as otherwise we would

not be able to solve for the corresponding variable z,.

Note that the combined algorithm does indeed solve the original system, since if

Ux=c and Lc=Db, then Ax=LUx=Lc=h.

Example 1.5. With the LU decomposition

2 1 1 1 0 0 2 1 1
4 5 2|1 =12 10 0 3 0
2 -2 0 1 -1 1 0 0 -1

found in Example 1.4, we can readily solve any linear system with the given coefficient
matrix by Forward and Back Substitution. For instance, to find the solution to

2 1 1\ (= 1
4 5 2 lyl=1|2],
2 -2 0/ \=z 2

we first solve the lower triangular system

1 0 0\ [a 1 a =1
2 1 0 bl=12], or, explicitly, 2a+b =2,
L =11 ¢ 2 a—b+c=2.

The first equation says a = 1; substituting into the second, we find b = 0; the final equation
yields ¢ = 1. We then use Back Substitution to solve the upper triangular system

2 1 1 T a 1 2e+y+z=1,
0 3 0 yl=1b]=10], which is 3y =0,
00 -1/ \= c 1 L1

We find z = —1, then y = 0, and then x = 1, which is indeed the solution.

Thus, once we have found the LU factorization of the coefficient matrix A, the Forward
and Back Substitution processes quickly produce the solution to any system Ax = b.
Moreover, they can be straightforwardly programmed on a computer. In practice, to solve
a system from scratch, it is just a matter of taste whether you work directly with the
augmented matrix, or first determine the LU factorization of the coefficient matrix, and
then apply Forward and Back Substitution to compute the solution.

Exercises

1.3.32. Given the LU factorizations you calculated in Exercise 1.3.21, solve the associated
linear systems Ax = b, where b is the column vector with all entries equal to 1.
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1.3.33. In each of the following problems, find the A = LU factorization of the coefficient
matrix, and then use Forward and Back Substitution to solve the corresponding linear
systems Ax =b : for each of the indicated right-hand sides:

3 (1 (2 (0
) o= () = (3) = (3)
1 -1 1 -3

1 1], by={-1], by=| 0]
12 1 2

~1
3

~1

1

-1

9

—6

2

20 3 4

3 40 5|, b =
4

1

0

~1

0

1

4

-8

—4

h:-
I

:J>.
I
/ﬂ/—\/—\

1 0 0
) A= 0], by={1], bs=1{0].
5 6.0 0 0 1
0 -1 0 1 0
2 3 -1 0 =1
3 2 2P| b= of
-1 2 1 1 1
-2 0 2 1 3 2
B 1 -1 -1 o 0 3
(f) A= 12 1T o Pem ] PeT |
-1 1 2 0 2 1

1.4 Pivoting and Permutations

The method of Gaussian Elimination presented so far applies only to regular matrices.

But not every square matrix is regular; a simple class of examples is matrices whose upper

left, i.e., (1,1), entry is zero, and so cannot serve as the first pivot. More generally, the

algorithm cannot proceed whenever a zero entry appears in the current pivot position on

the diagonal. What then to do? The answer requires revisiting the source of the method.
Consider, as a specific example, the linear system

2y + 2z =2,
20+ 6y +2=1, (1.29)
r+y+4z=3.
The augmented coefficient matrix is
2

7
3

=N O
— O N
> =

In this case, the (1, 1) entry is 0, and so is not a legitimate pivot. The problem, of course,
is that the first variable x does not appear in the first equation, and so we cannot use it
to eliminate x in the other two equations. But this “problem” is actually a bonus — we
already have an equation with only two variables in it, and so we need to eliminate = from
only one of the other two equations. To be systematic, we rewrite the system in a different
order,

2046y +2=7,

2y + 2 =2,

r+y+4z=23,
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by interchanging the first two equations. In other words, we employ

IR e Sl 0o s tntenn b cn B Interchange two equations.

Clearly, this operation does not change the solution and so produces an equivalent linear
system. In our case, the augmented coefficient matrix,

6 1|7
2 1 |2],
1 4|3

= O N

can be obtained from the original by performing the second type of row operation:

ISt a0 intot=- 28 Interchange two rows of the matrix.

The new nonzero upper left entry, 2, can now serve as the first pivot, and we may
continue to apply elementary row operations of type #1 to reduce our matrix to upper
triangular form. For this particular example, we eliminate the remaining nonzero entry in
the first column by subtracting % the first row from the last:

2 6 1 7
0 2 1 2

7 1
0 =2 5 | =3

The (2, 2) entry serves as the next pivot. To eliminate the nonzero entry below it, we add
the second to the third row:

2 6 1 7
0 2 1 2
9 3
00 3 5
We have now placed the system in upper triangular form, with the three pivots 2,2, and

% along the diagonal. Back Substitution produces the solution x = %, Yy = %, z= %

The row interchange that is required when a zero shows up in the diagonal pivot position
is known as pivoting. Later, in Section 1.7, we will discuss practical reasons for pivoting
even when a diagonal entry is nonzero. Let us distinguish the class of matrices that can be
reduced to upper triangular form by Gaussian Elimination with pivoting. These matrices
will prove to be of fundamental importance throughout linear algebra.

Definition 1.6. A square matrix is called nonsingular if it can be reduced to upper tri-
angular form with all non-zero elements on the diagonal — the pivots — by elementary
row operations of types 1 and 2.

In contrast, a singular square matrix cannot be reduced to such upper triangular form
by such row operations, because at some stage in the elimination procedure the diagonal
entry and all the entries below it are zero. Every regular matrix is nonsingular, but, as
we just saw, not every nonsingular matrix is regular. Uniqueness of solutions is the key
defining characteristic of nonsingularity.

Theorem 1.7. A linear system Ax = b has a unique solution for every choice of right-
hand side b if and only if its coefficient matrix A is square and nonsingular.

We are able to prove the “if” part of this theorem, since nonsingularity implies reduction
to an equivalent upper triangular form that has the same solutions as the original system.
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The unique solution to the system is then found by Back Substitution. The “only if” part
will be proved in Section 1.8.

The revised version of the Gaussian Elimination algorithm, valid for all nonsingular co-
efficient matrices, is implemented by the accompanying pseudocode program. The starting
point is the augmented matrix M = (A | b) representing the linear system Ax = b.
After successful termination of the program, the result is an augmented matrix in upper
triangular form M = (U | c) representing the equivalent linear system Ux = c. One then
uses Back Substitution to determine the solution x to the linear system.

Gaussian Elimination — Nonsingular Case

start
for j=1ton
if my; = 0 for all k> j, stop; print “A is singular”
if m;; =0 but my; # 0 for some k> j, switch rows k and j
for i=754+1 ton
set l;; =m;;/m,;
add —1[;; times row j to row ¢ of M
next 1
next j

end

Remark. When performing the algorithm using exact arithmetic, when pivoting is re-
quired it does not matter which row k one chooses to switch with row j, as long as it
lies below and the (k, j) entry is nonzero. When dealing with matters involving numerical
precision and round off errors, there are some practical rules of thumb to be followed to
maintain accuracy in the intervening computations. These will be discussed in Section 1.7.

Exercises

1.4.1. Determine whether the following matrices are singular or nonsingular:

0 1 2 1 1 3 1 2 3
a01,b12,c(1 13),d(2 22),e(456),
()<12)(<4_8)()2—20()3—11()789

9

=

1 10 -3 0 -1 0 1 1 -2
2 2 4 0 1 0 -1 0 4 1 -1 -1
() 1 292 @l 2 o 2 W|_g 1 2 1
0 10 1 2 0 2 0 4 -1 1 2

1.4.2. Classify the following matrices as (i) regular, (i¢) nonsingular, and/or (i) singular:
9 1 3 -2 1 1 -2 3 _} g :i) (2)
(a) s (b) | -1 4 4], () | -2 4 =11, (d)
14 2 2 5 3 -1 2 3 2 6
2 -1 3 5

1.4.3. Find the equation z = ax + by + ¢ for the plane passing through the three points
p1 = (0727 _1)5 p2 = (_2745 3)) p3 = (25 _17 _3)

[
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1.4.4. Show that a 2 X 2 matrix A = (i 2) is (a) nonsingular if and only if ad — be # 0,

(b) regular if and only if ad —bc # 0 and a # 0.

1.4.5. Solve the following systems of equations by Gaussian Elimination:

Ty — 239 + 215 = 15, 2x) — 1y =1, Ty — T3 =4,
(a) x7 —2x9 + 253 = 10, (b) —4xqy +2x9 —3w3 =8, (¢) =231 —dx9 =2,
221 — w9 — 2253 = —10. T — 3Ty + T3 = 5. Ty + 13 = —8.
r—y+z—w=0, -2z+2y—z+w =2, —3x9 + 213 =0, v3 — x4 =2,

(d) (e)

—4x+4y+3z2=5, z—-3y+w=4. x) —2x3=—1, —4x| + 72, = —5.
1.4.6. True or false: A singular matrix cannot be regular.

1.4.7. True or false: A square matrix that has a column with all 0 entries is singular. What
can you say about a linear system that has such a coefficient matrix?

{ 1.4.8. Explain why the solution to the homogeneous system Ax = 0 with nonsingular
coefficient matrix is x = 0.

1.4.9. Write out the details of the proof of the “if” part of Theorem 1.7: if A is nonsingular,
then the linear system A x = b has a unique solution for every b.

Permutations and Permutation Matrices

As with the first type of elementary row operation, row interchanges can be accomplished
by multiplication by a second type of elementary matrix, which is found by applying the
row operation to the identity matrix of the appropriate size. For instance, interchanging
rows 1 and 2 of the 3 x 3 identity matrix produces the elementary interchange matrix

0 1 0
P=11 0 0 |. Theresult PA of multiplying any 3-rowed matrix A on the left by P is
0 0 1

the same as interchanging the first two rows of A. For instance,
010 1 2 3 4 5 6
1 00 4 5 6|=11 2 3
0 0 1 7 8 9 7 8 9

Multiple row interchanges are accomplished by combining such elementary interchange
matrices. Each such combination of row interchanges uniquely corresponds to what is
called a permutation matrix.

Definition 1.8. A permutation matriz is a matrix obtained from the identity matrix by
any combination of row interchanges.

In particular, applying a row interchange to a permutation matrix produces another
permutation matrix. The following result is easily established.

Lemma 1.9. A matrix P is a permutation matrix if and only if each row of P contains
all 0 entries except for a single 1, and, in addition, each column of P also contains all 0
entries except for a single 1.

In general, if, in the permutation matrix P, a 1 appears in position (4, 7), then multi-
plication by P will move the j*® row of A into the i*® row of the product P A.



26 1 Linear Algebraic Systems

Example 1.10. There are six different 3 x 3 permutation matrices, namely
1 00 010 0 0 1 010 0 0 1 1 00
o1 0}f,{00 1}),f{1 0 0,12 0 O0}),{0 1T 0],10 0 1
0 0 1 1 00 010 0 0 1 1 0 0 010
(1.30)

These have the following effects: if A is a matrix with row vectors ry, r,, ry, then multipli-
cation on the left by each of the six permutation matrices produces, respectively,

ry ry rs Iy Iy ry
Ty ’ rs ’ r ’ ry ’ ry ’ rs . (131)
rs ry ry rs ry ry

Thus, the first permutation matrix, which is the identity, does nothing — the identity
permutation. The fourth, fifth, sixth represent row interchanges. The second and third are
non-elementary permutations, and can be realized by a pair of successive row interchanges.

In general, any rearrangement of a finite ordered collection of objects is called a per-
mutation. Thus, the 6 permutation matrices (1.30) produce the 6 possible permutations
(1.31) of the rows of a 3 x 3 matrix. In general, if a permutation 7 rearranges the integers
(1,...,n) to form (m(1),...,7(n)), then the corresponding permutation matrix P = P,
that maps row r; to row r ;) will have 1’s in positions (i,m(3)) for i = 1,...,n and zeros
everywhere else. For example, the second permutation matrix in (1.30) corresponds to the
permutation with w(1) = 2, m(2) = 3, w(3) = 1. Keep in mind that 7(1),...,m(n) is merely
a rearrangement of the integers 1,...,n, so that 1 < 7(i) < n and 7(¢) # 7(j) when i # j.

An elementary combinatorial argument proves that there is a total of

nl=nmn—-1)(n—2) ---3-2-1 (1.32)

different permutations of (1,...,n), and hence the same number of permutation matrices
of size n x n. Moreover, the product P = P, P, of any two permutation matrices is also a
permutation matrix, and corresponds to the composition of the two permutations, meaning
one permutes according to P, and then permutes the result according to P,. An important
point is that multiplication of permutation matrices is noncommutative — the order in
which one permutes makes a difference. Switching the first and second rows, and then
switching the second and third rows, does not have the same effect as first switching the
second and third rows and then switching the first and second rows!

Exercises

1.4.10. Write down the elementary 4 x 4 permutation matrix (a) P; that permutes the second
and fourth rows, and (b) P, that permutes the first and fourth rows. (¢) Do P, and P,
commute? (d) Explain what the matrix products P, P, and P, P; do to a 4 x 4 matrix.

1.4.11. Write down the permutation matrix P such that

u v a d a b il £4

B bl | ¢ bl _ |a 21 1

(a) P( v) = (w), (b) P cl=1al (c) P cl=1al (d) P| zg3 | = | =5
w U d b d c Ty Tq

L5 L5

1.4.12. Construct a multiplication table that shows all possible products of the 3 x 3
permutation matrices (1.30). List all pairs that commute.
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1.4.13. Write down all 4 x 4 permutation matrices that (a) fix the third row of a 4 x 4 matrix
A; (b) take the third row to the fourth row; (¢) interchange the second and third rows.

1.4.14. True or false: (a) Every elementary permutation matrix satisfies P> = 1. (b) Every

permutation matrix satisfies P2 = 1. (¢) A matrix that satisfies P? = I is necessarily a
permutation matrix.

1.4.15.(a) Let P and @ be n x n permutation matrices and v € R"™ a vector. Under what
conditions does the equation Pv = Qv imply that P = Q? (b) Answer the same question
when PA = Q A, where A is an n X k matrix.

1.4.16. Let P be the 3 x 3 permutation matrix such that the product P A permutes the first
and third rows of the 3 x 3 matrix A. (a) Write down P. (b) True or false: The product

AP is obtained by permuting the first and third columns of A.
(¢) Does the same conclusion hold for every permutation matrix: is the effect of P A on the
rows of a square matrix A the same as the effect of AP on the columns of A?

© 1.4.17. A common notation for a permutation 7 of the integers {1,...,m} isasa 2 x m
. 1 2 3 ....0m e . .
matrix (71(1) 22 #(3) ... wm) ), indicating that 7 takes ¢ to 7(¢). (a) Show

that such a permutation corresponds to the permutation matrix with 1’s in positions
(7(4),4) for 5 = 1,...,m. (b) Write down the permutation matrices corresponding to

. oo (12 3y (1 2 3 4\ .. (1 2 3 4
the following permutations: (%) (2 1 3>, (i) (4 5 3 1>, (i) (1 1 9 3>,

(iv) (1 2 314 5>. Which are elementary matrices? (¢) Write down, using the

5 4 3 2 1
preceding notation, the permutations corresponding to the following permutation matrices:
00 1 0 01 0 O 0 00 10
0 0 1 1 0 0 0 O
. . 0 0 01 00 1 0 )
(i) |1 0 0], (i) , (449) , (w) [0 0 1 0 O
1 0 0 0 0 0 0 1
010 01 0 0 1 0 00 000 01
01 0 00

$ 1.4.18. Justify the statement that there are n! different n x n permutation matrices.

1.4.19. Consider the following combination of elementary row operations of type #1: (i) Add
row i to row j. (%) Subtract row j from row ¢. (i77) Add row i to row j again. Prove that
the net effect is to interchange —1 times row ¢ with row j. Thus, we can almost produce
an elementary row operation of type #2 by a combination of elementary row operations
of type #1. Lest you be tempted to try, Exercise 1.9.16 proves that one cannot produce a
bona fide row interchange by a combination of elementary row operations of type #1.

1.4.20. What is the effect of permuting the columns of its coefficient matrix on a linear system?

The Permuted LU Factorization

As we now know, every nonsingular matrix A can be reduced to upper triangular form
by elementary row operations of types #1 and #2. The row interchanges merely reorder
the equations. If one performs all of the required row interchanges in advance, then the
elimination algorithm can proceed without requiring any further pivoting. Thus, the matrix
obtained by permuting the rows of A in the prescribed manner is regular. In other words,
if A is a nonsingular matrix, then there is a permutation matrix P such that the product
P A is regular, and hence admits an LU factorization. As a result, we deduce the general
permuted LU factorization

PA=LU, (1.33)
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where P is a permutation matrix, L is lower unitriangular, and U is upper triangular with
the pivots on the diagonal. For instance, in the preceding example, we permuted the first
and second rows, and hence equation (1.33) has the explicit form

01 0\ /0 21 1 00\ /2 6 1
1roo]f26 1)=(0 1o0]f[0 2 1
001 11 4 ;3 -1 1/ \0 0 3

We have now established the following generalization of Theorem 1.3.

Theorem 1.11. Let A be an n x n matrix. Then the following conditions are equivalent:
(i) A is nonsingular.
(ii) A has n nonzero pivots.
(iii) A admits a permuted LU factorization: PA = LU.

A practical method to construct a permuted L U factorization of a given matrix A would
proceed as follows. First set up P = L = 1 as n x n identity matrices. The matrix P
will keep track of the permutations performed during the Gaussian Elimination process,
while the entries of L below the diagonal are gradually replaced by the negatives of the
multiples used in the corresponding row operations of type #1. Each time two rows of A are
interchanged, the same two rows of P will be interchanged. Moreover, any pair of entries
that both lie below the diagonal in these same two rows of L must also be interchanged,
while entries lying on and above its diagonal need to stay in their place. At a successful
conclusion to the procedure, A will have been converted into the upper triangular matrix
U, while L and P will assume their final form. Here is an illustrative example.

Example 1.12. Our goal is to produce a permuted LU factorization of the matrix

1 2 -1 0
2 4 -2 -1
-3 =5 6 1
-1 2 8 -2

A:

To begin the procedure, we apply row operations of type #1 to eliminate the entries below
the first pivot. The updated matrices’ are

1 2 -1 0 10 0 0 10 0 0

00 0 -1 21 00 01 .00
A= 0 1 3 10’ L= -3 01 0) P= 0 01 0]’

04 7 =2 -1 0 0 1 0 0 01

where L keeps track of the row operations, and we initialize P to be the identity matrix.
The (2,2) entry of the new A is zero, and so we interchange its second and third rows,
leading to

1 2 -1 0 10 0 O 10 0 0
0 1 3 1 -3 1 0 0 0 010
A= 00 o0 -1} L= 2 01 0Y) P= 01 00
0 4 7T =2 -1 0 0 1 0 0 01

t Here, we are adopting computer programming conventions, where updates of a matrix are all
given the same name.
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We interchanged the same two rows of P, while in L we only interchanged the already
computed entries in its second and third rows that lie in its first column below the diagonal.
We then eliminate the nonzero entry lying below the (2, 2) pivot, leading to

1 2 -1 0 1 0 0 O 1 0 0 O
0 1 3 1 -3 1 0 0 0 01 O
A= 0 0 0o -1/’ L= 2 01 0] P= 01 0 O
00 -5 —6 -1 4 0 1 0 0 0 1
A final row interchange places the matrix in upper triangular form:
1 2 -1 0 1 0 0 O 1 0 0 O
0 1 3 1 -3 1 0 0 00 1 0
U=A= 0 0 -5 -6’ L= -1 4 1 0}’ P= 00 0 1
0 0 0 -1 2 0 0 1 01 0 O

Again, we performed the same row interchange on P, while interchanging only the third
and fourth row entries of L that lie below the diagonal. You can verify that

1 2 -1 0 1 0 0 0 1 2 -1 0
-3 =95 6 1 -3 1 0 0 0 1 3 1

PA= -1 2 8 -2 | -1 4 10 00 -5 —6 =Lu, (134
2 4 -2 -1 2 0 01 0 0 0 -1

as promised. Thus, by rearranging the equations in the order first, third, fourth, second,
as prescribed by P, we obtain an equivalent linear system whose coefficient matrix P A is
regular, in accordance with Theorem 1.11.

Once the permuted LU factorization is established, the solution to the original system
Ax = b is obtained by applying the same Forward and Back Substitution algorithm
presented above. Explicitly, we first multiply the system Ax = b by the permutation
matrix, leading to R

PAx=Pb =D, (1.35)

whose right-hand side b has been obtained by permuting the entries of b in the same
fashion as the rows of A. We then solve the two triangular systems

Lc=hb and Ux=c (1.36)
by, respectively, Forward and Back Substitution, as before.

Example 1.12 (continued). Suppose we wish to solve the linear system

1 2 -1 0\ /=x 1
2 4 =2 —1|[y] (-1
-3 -5 6 1]| = 3
-1 2 8 -2/ \w 0

In view of the PA = LU factorization established in (1.34), we need only solve the two
auxiliary lower and upper triangular systems (1.36). The lower triangular system is

1 00 0\ /a 1

3 100]|[b] [ 3}

141 0] of
2 0 0 1/ \d ~1
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whose right-hand side was obtained by applying the permutation matrix P to the right-

hand side of the original system. Its solution, namely a =1, b =6, c = —23, d = —3, is
obtained through Forward Substitution. The resulting upper triangular system is

1 2 -1 0 x 1

0 1 3 1 vyl 6

0 0 -5 -6 z —23

00 0 -1 w -3

Its solution, w =3, z=1, y =0, = = 2, which is also the solution to the original system,
is easily obtained by Back Substitution.

Exercises

1.4.21. For each of the listed matrices A and vectors b, find a permuted LU factorization of

the matrix, and use your factorization to solve the system Ax =b. (a) <g 71 ), <3 >7

2
00 —4 1 01 -3 1 A S T
(b)y |12 3], | 2], () (0 2 3| | 2] (d ; ;
01 7 -1 10 2 -1 rerer2 0
1 -1 2 1 3
0 1 0 0 4 00 2 3 4 -3
9 3 1 0 _4 01 -7 2 3 -2
(e) , ()14 11 1], 0
1 4 -1 2 0
- _1 92 3 5 00 10 2 0
00 173 -7

1.4.22. For each of the following linear systems find a permuted LU factorization of the
coefficient matrix and then use it to solve the system by Forward and Back Substitution.

(a) —3xy + 329 + 125 =3, (b) yrz=1, () r+y—3z=1,
731‘1 +$2 *21’3 = —5.
T -ztw=4 z+2y—z+w=4
{ 1.4.23.(a) Explain why

0 1 0)\/0 13 1 0 0\ /2 -1 1

1 oof|ll2 -1 1]l=(0o 1o0]||l0 1 3],

0 1)\2 -2 0 1 -1 1)\0o 0 2
1 3

1 00\/2 -2 0
-1 1|=(110][l0 1 1],
-2 0 01 1/\o o0 2
1\ /0 1 3 1 0\ /2 -2 0
oll2 -1 1|=1]o 0o 1 3],
0)\2 -2 0 1 1/\o o0 -2

are all legitimate permuted LU factorizations of the same matrix. List the elementary row
operations that are being used in each case.

0 1 3 T -5
(b) Use each of the factorizations to solve the linear system [ 2 —1 1 yl|l=1-1].
2 =2 0 z 0

Do you always obtain the same result? Explain why or why not. 0 1 9
1.4.24.(a) Find three different permuted LU factorizations of the matrix A = (1 —1) .
(b) How many different permuted LU factorizations does A have? 1 3

Y
— o O

= O O O, O OO+~
SO =
N~
Y
NN O

== O
[en)

= o
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1.4.25. What is the maximal number of permuted LU factorizations a regular 3 x 3 matrix can
have? Give an example of such a matrix.

1.4.26. True or false: The pivots of a nonsingular matrix are uniquely defined.

& 1.4.27.(a) Write a pseudocode program implementing the algorithm for finding the permuted
LU factorization of a matrix. (b) Program your algorithm and test it on the examples in
Exercise 1.4.21.

1.5 Matrix Inverses

The inverse of a matrix is analogous to the reciprocal a=! = 1/a of a nonzero scalar
a # 0. We already encountered the inverses of matrices corresponding to elementary row
operations. In this section, we will study inverses of general square matrices. We begin
with the formal definition.

Definition 1.13. Let A be a square matrix of size n x n. An n X n matrix X is called the
inverse of A if it satisfies
XA=1=AX, (1.37)

where I = I is the n x n identity matrix. The inverse of A is commonly denoted by A~?.

Remark. Noncommutativity of matrix multiplication requires that we impose both con-
ditions in (1.37) in order to properly define an inverse to the matrix A. The first condition,
X A =1, says that X is a left inverse, while the second, A X = I, requires that X also
be a right inverse. Rectangular matrices might have either a left inverse or a right inverse,
but, as we shall see, only square matrices have both, and so only square matrices can have
full-fledged inverses. However, not every square matrix has an inverse. Indeed, not every
scalar has an inverse: 0~! = 1/0 is not defined, since the equation 0z = 1 has no solution.

Example 1.14. Since

1 2 -1 3 4 -5 1 0 O 3 4 -5 1 2 -1
-3 1 2 11 -1}J=101 0)]=111 -1 -3 1 21,
-2 2 1 4 6 -7 0 0 1 4 6 -7 -2 2 1
1 2 -1 3 4 -5
we conclude that when A = | -3 1 2 |,then A~' =1 1 —1]. Observe that
-2 2 1 4 6 -7

there is no obvious way to anticipate the entries of A~! from the entries of A.

Example 1.15. Let us compute the inverse X = (Z wy>’ when it exists, of a general

a b
c d

_(axz+bz ay+bw) (1 0\ _
AX_(cx—i—dz cy+dw>_<0 1)_I

holds if and only if x, y, z, w satisfy the linear system

2 X 2 matrix A = < > The right inverse condition

ar+bz=1, ay+bw =0,
cx+dz=0, cy+dw=1.
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Solving by Gaussian Elimination (or directly), we find

v d - b L c a
ad—be’ y= N

Cad—be’ " ad—be’ YT LA —be’
provided the common denominator ad — bec # 0 does not vanish. Therefore, the matrix

1 d —b
X =
ad—"bc <— c a)
forms a right inverse to A. However, a short computation shows that it also defines a left
inverse:
_(za+yc zb+yd) (1 0\ _
XA_(za—i—wc zb+wd)  \0 1 =1

and hence X = A~! is the inverse of A.
The denominator appearing in the preceding formulas has a special name; it is called
the determinant of the 2 x 2 matrix A, and denoted by

a b
det(c d>—ad—bc. (1.38)

Thus, the determinant of a 2 x 2 matrix is the product of the diagonal entries minus
the product of the off-diagonal entries. (Determinants of larger square matrices will be
discussed in Section 1.9.) Thus, the 2 x 2 matrix A is invertible, with

_ 1 d —b
1 _
A ~ad—bc (—C a)’ (1.39)

1 3
-2 -4

if and only if det A # 0. For example, if A = (

>, then det A = 2 # 0. We
1 — _ _ —_
conclude that A has an inverse, which, by (1.39),is A=1 = = ( 4 3> = ( 2

2\ 2 1 1)'

Example 1.16. We already learned how to find the inverse of an elementary matrix of

N= MW

type #1: we just negate the one nonzero off-diagonal entry. For example, if

100 1 00
E=(0 1 0], then E'= 010
2 0 1 -2 0 1

This is because the inverse of the elementary row operation that adds twice the first row
to the third row is the operation of subtracting twice the first row from the third row.

010
Example 1.17. Let P= |1 0 0 | denote the elementary matrix that has the effect
0 0 1

of interchanging rows 1 and 2 of a 3-rowed matrix. Then P? = I, since performing the
interchange twice returns us to where we began. This implies that P~! = P is its own
inverse. Indeed, the same result holds for all elementary permutation matrices that corre-
spond to row operations of type #2. However, it is not true for more general permutation
matrices.

The following fundamental result will be established later in this chapter.

Theorem 1.18. A square matrix has an inverse if and only if it is nonsingular.
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Consequently, an n x n matrix will have an inverse if and only if it can be reduced to
upper triangular form, with n nonzero pivots on the diagonal, by a combination of elemen-
tary row operations. Indeed, “invertible” is often used as a synonym for “nonsingular”. All
other matrices are singular and do not have an inverse as defined above. Before attempting
to prove Theorem 1.18, we need first to become familiar with some elementary properties
of matrix inverses.

Lemma 1.19. The inverse of a square matrix, if it exists, is unique.
Proof: Suppose both X and Y satisfy (1.37), so
XA=1=A4X and YA=1=AY.
Then, by associativity,
X=XI=X(AY)=(XA)Y=1Y =Y. Q.E.D.
Inverting a matrix twice brings us back to where we started.
Lemma 1.20. If A is an invertible matrix, then A~! is also invertible and (A~%)~! = A.

Proof: The matrix inverse equations A=™' A = I = A A~! are sufficient to prove that A is
the inverse of A~!. Q.E.D.

Lemma 1.21. If A and B are invertible matrices of the same size, then their product,
A B, is invertible, and
(AB)™' =B~ tA™L. (1.40)

Note that the order of the factors is reversed under inversion.

Proof: Let X = B~'A~!. Then, by associativity,
X(AB)=B'A"'AB=B'IB=B"'B=1,
(AB)Y X =ABB'A7' =ATA ' =441 = 1.

Thus X is both a left and a right inverse for the product matrix A B. Q.E.D.
Example 1.22. One verifies, directly, that the inverse of A = <(1) ?) is
1 -2 . . 0 1Y) . 0 -1

-1 _ _ -1 _ _
AT = <O 1), while the inverse of B = (_1 0) is B~ = <1 ) There

0
fore, the inverse of their product C = AB = (1 2) (_0 1) = <_? (1)> is given by

0 1

i peig (0 1\ (1 =2\ _ (0 -1
C_BA_(l oJlo 1)7\1 —2)

We can straightforwardly generalize the preceding result. The inverse of a k-fold product
of invertible matrices is the product of their inverses, in the reverse order:

(A1A2"'Alc71Ak)71 :AlzlAl:—ll "'A2_1A1_1- (1.41)

Warning. In general, (A+ B)~! # A~' + B~L. Indeed, this equation is not even true for
scalars (1 x 1 matrices)!
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Exercises

1.5.1. Verify by direct multiplication that the following matrices are inverses, i.e., both
2 11

conditions in (1.37) hold: (a) A:( 2 :1”) A‘1:<_% _g>; (b)A(?) 2 1),
T 2 1 2

L 3 -1 -1 -1 3 2 ) -1 1 1
-1 ) B 1 4
A= -4 2 1];(A=] 2 2 -1, A= 4 1 _3
-1 0 1 -2 1 3 _6 5 8
7 7 7
1 2 0
152, Let A=1|0 1 3 |. Find the right inverse of A by setting up and solving the linear
1 -1 -8

system AX = I. Verify that the resulting matrix X is also a left inverse.

1.5.3. Write down the inverse of each of the following elementary matrices: (a) <(1) é),

10 0 1 0 00 0 0 0 1
1 0 1 -2 01 0 0 01 0 O
® (3 9) @ (5 ) @ (8 (1) —f)me) ARG
0 0 0 1 1 0 0 0
1 0 0 1 0 0
1.5.4. Show that the inverseof L=[a 1 0|isL™'=|—-a 1 0 . However, the inverse
b 0 1 -b 0 1
1 0 0 1 0 0
of M=|a 1 0|isnot | —-a 1 0|. Whatis M~ '?
b ¢ 1 —-b —c 1

1.5.5. Explain why a matrix with a row of all zeros does not have an inverse.

1.5.6.(a) Write down the inverse of the matrices A = <é }) and B = (i _§> (b) Write

down the product matrix C' = A B and its inverse C' -1 using the inverse product formula.
1.5.7.(a) Find the inverse of the rotation matriz R, = C(.)SQ —sing , where 6 € R.
sin 6 cos 6
(b) Use your result to solve the system z = acosf — bsinf, y = asinf+ bcosf, for a and b
in terms of x and y. (c) Prove that, for all a € R and 0 < # < 7, the matrix Ry —a I has
an inverse.
1.5.8.(a) Write down the inverses of each of the 3 x 3 permutation matrices (1.30). (b) Which
ones are their own inverses, P~1 = P? (¢) Can you find a non-elementary permutation
matrix P that is its own inverse: P~ = P?

1.5.9. Find the inverse of the following permutation matrices:

000 1 0100 1000 58?88

001 0 001 0 000 1
(a)0100’(b)0001’(c)0100’(d)8?88(1)

100 0 100 0 001 0 e

1.5.10. Explain how to write down the inverse permutation using the notation of Exercise
1.4.17. Apply your method to the examples in Exercise 1.5.9, and check the result by
verifying that it produces the inverse permutation matrix.

1.5.11. Find all real 2 x 2 matrices that are their own inverses: 471 = A.
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1.5.12. Show that if a square matrix A satisfies A2 —3A4+1=0,then A=t =31 — A.
1.5.13. Prove that if ¢ # 0 is any nonzero scalar and A is an invertible matrix, then the scalar

1
product matrix ¢ A is invertible, and (cA)~! = = A7L,
c

0O a 0 0 O
b 0 ¢ 0 0
1.5.14. Show that A= [0 d 0 e 0 | is not invertible for any value of the entries.
00 f 0 g
00 0 A O

1.5.15. Show that if A is a nonsingular matrix, so is everyy power A™.

1.5.16. Prove that a diagonal matrix D = diag (dy,...,d,,) is invertible if and only if all its

diagonal entries are nonzero, in which case D™1 = diag (1/dy,...,1/d,).

1.5.17. Prove that if U is a nonsingular upper triangular matrix, then the diagonal entries of
U~ are the reciprocals of the diagonal entries of U.
1.5.18.(a) Let U be a m x n matrix and V an n x m matrix, such that the m x m matrix
I,, +UYV is invertible. Prove that I, + V U is also invertible, and is given by
(I, +vo)y =1, -v(I, +UV)'u
(b) The Sherman—Morrison—Woodbury formula generalizes this identity to
(A+VBU) t=A"t—a vt +ua~tv)y"luat. (1.42)
Explain what assumptions must be made on the matrices A, B, U,V for (1.42) to be valid.

1.5.19. Two matrices A and B are said to be similar, written A ~ B, if there exists an
invertible matrix S such that B = ST'AS. Prove: (a) A~ A. (b) If A~ B, then B ~ A.
(c) If A~ B and B ~ C, then A~ C.

A O

O B

matrices, not necessarily of the same size, while the O’s are zero matrices of the

appropriate sizes. Prove that D has an inverse if and only if both A and B do, and

1.5.20.(a) A block matrix D = ( is called block diagonal if A and B are square

) 1 2 0 1 -1 0 0

pl= (4 Ql . (b) Find the inverseof | 2 1 0 | and 2 -100 by
O B 0 0 1 3
003 0 0 2 5

using this method.

1 -1
1.5.21.(a) Show that B = <_1 _} (1)> is a left inverse of A = (O 1). (b) Show that
1 1

A does not have a right inverse. (c¢) Can you find any other left inverses of A?

1.5.22. Prove that the rectangular matrix A = <% 3 _(1)) has a right inverse, but no left
inverse.

1.5.23.(a) Are there any nonzero real scalars that satisfy (a + )" =a=t + 5712
(b) Are there any nonsingular real 2 x 2 matrices that satisfy (A + B)™1 = A=1 + B=1?

Gauss—Jordan Elimination

The principal algorithm used to compute the inverse of a nonsingular matrix is known as
Gauss—Jordan Elimination, in honor of Gauss and Wilhelm Jordan, a nineteenth-century
German engineer. A key fact is that, given that A is square, we need to solve only the

right inverse equation
AX =1 (1.43)
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in order to compute X = A~!. The left inverse equation in (1.37), namely XA = I,
will then follow as an automatic consequence. In other words, for square matrices, a right
inverse is automatically a left inverse, and conversely! A proof will appear below.

The reader may well ask, then, why use both left and right inverse conditions in the
original definition? There are several good reasons. First of all, a non-square matrix
may satisfy one of the two conditions — having either a left inverse or a right inverse
— but can never satisfy both. Moreover, even when we restrict our attention to square
matrices, starting with only one of the conditions makes the logical development of the
subject considerably more difficult, and not really worth the extra effort. Once we have
established the basic properties of the inverse of a square matrix, we can then safely discard
the superfluous left inverse condition. Finally, when we generalize the notion of an inverse
to linear operators in Chapter 7, then, in contrast to the case of square matrices, we cannot
dispense with either of the conditions.

Let us write out the individual columns of the right inverse equation (1.43). The jth
column of the n x n identity matrix I is the vector e; that has a 1 in the jth slot and 0’s

elsewhere, so 1 0 0
0 1 0
0 0 0
e, =1 .1, e,=1 .1, e,=| .| (1.44)
0 0 0
0 0 1

According to (1.11), the j*™ column of the matrix product AX is equal to Ax;, where
x; denotes the jth column of the inverse matrix X. Therefore, the single matrix equation
(1.43) is equivalent to n linear systems

Ax, =ey, Ax, =e,, Ax, =e,, (1.45)

all having the same coefficient matrix. As such, to solve them we should form the n
augmented matrices M; = (A | e ),...,M, = (A | e, ), and then apply our Gaussian
Elimination algorithm to each. But this would be a waste of effort. Since the coefficient
matrix is the same, we will end up performing identical row operations on each augmented
matrix. Clearly, it will be more efficient to combine them into one large augmented matrix
M= (Ale, ...e,)=(A|1), ofsize n x (2n), in which the right-hand sides ey, ..., e,
of our systems are placed into n different columns, which we then recognize as reassembling
the columns of an n x n identity matrix. We may then simultaneously apply our elementary
row operations to reduce, if possible, the large augmented matrix so that its first n columns
are in upper triangular form.

0 2 1
Example 1.23. For example, to find the inverse of the matrix A= [ 2 6 1 |, we
form the large augmented matrix 11 4
0 2 11100
26 11010
1 1 4100 1
Applying the same sequence of elementary row operations as in Section 1.4, we first inter-

change the rows

—_ O N
— N
S =
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and then eliminate the nonzero entries below the first pivot,

2 6 1|0 10

0 2 1|1 00
7 1

0 -2 I |0 -1 1

Next we eliminate the entry below the second pivot:

2 6 1[0 10
02 1|1 00
00 5|1 -4 1

At this stage, we have reduced our augmented matrix to the form (U | C ), where U is
upper triangular. This is equivalent to reducing the original n linear systems Ax, = e, to
n upper triangular systems Ux,; = c,. We can therefore perform n back substitutions to
produce the solutions x,, which would form the individual columns of the inverse matrix
X = (xq ... x,). In the more common version of the Gauss-Jordan scheme, one instead
continues to employ elementary row operations to fully reduce the augmented matrix. The
goal is to produce an augmented matrix ( IX ) in which the left-hand n x n matrix has
become the identity, while the right-hand matrix is the desired solution X = A~!. Indeed,
(I | X)) represents the n trivial linear systems Ix = x; whose solutions x = x; are the
columns of the inverse matrix X.

Now, the identity matrix has 0’s below the diagonal, just like U. It also has 1’s along
the diagonal, whereas U has the pivots (which are all nonzero) along the diagonal. Thus,
the next phase in the reduction process is to make all the diagonal entries of U equal to 1.
To proceed, we need to introduce the last, and least, of our linear systems operations.

IR e SR e O s tntern b crs e Multiply an equation by a nonzero constant.

This operation clearly does not affect the solution, and so yields an equivalent linear system.
The corresponding elementary row operation is:

1 ERateraR e AV A Oderaictntoy i = B Multiply a row of the matrix by a nonzero scalar.

Dividing the rows of the upper triangular augmented matrix (U | C') by the diagonal
pivots of U will produce a matrix of the form (V | B)7 where V' is upper unitriangular,
meaning it has all 1’s along the diagonal. In our particular example, the result of these
three elementary row operations of type #3 is

1 1
13 3]0 Lo
01 4|45 0 0],

2 1 2
00 115 -5 35

where we multiplied the first and second rows by % and the third row by %.

We are now over halfway towards our goal. We need only make the entries above
the diagonal of the left-hand matrix equal to zero. This can be done by elementary row
operations of type #1, but now we work backwards. First, we eliminate the nonzero entries
in the third column lying above the (3, 3) entry by subtracting one half the third row from
the second and also from the first:

— o O
\
I~ e
[
O Ol—= Ol

o O =
S = W
©l= o

—_
oo |~ o)
[
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Finally, we subtract 3 times the second row from the first to eliminate the remaining
nonzero off-diagonal entry, thereby completing the Gauss—Jordan procedure:

e
18 18

O = O

7L
18 18
2 1
9 9

The left-hand matrix is the identity, and therefore the final right-hand matrix is our desired
inverse:

_ 23 e 2

18 18 9

-1 _ 7 1 1
A L = -3 (1.46)

2 _1 2

9 9 9

The reader may wish to verify that the final result does satisfy both inverse conditions
AA ' =1 =A1A

We are now able to complete the proofs of the basic results on inverse matrices. First,
we need to determine the elementary matrix corresponding to an elementary row operation
of type #3. Again, this is obtained by performing the row operation in question on the
identity matrix. Thus, the elementary matrix that multiplies row ¢ by the nonzero scalar
c is the diagonal matrix having c in the it diagonal position, and 1’s elsewhere along the
diagonal. The inverse elementary matrix is the diagonal matrix with 1/c¢ in the i*h diagonal
position and 1’s elsewhere on the main diagonal; it corresponds to the inverse operation
that divides row ¢ by c¢. For example, the elementary matrix that multiplies the second

1 0 0 1 0 0
row of a 3-rowed matrix by 5is E= [ 0 5 0 |;itsinverseis E-'=[0 % 0
0 0 1 0 0 1

In summary:

Lemma 1.24. Every elementary matrix is nonsingular, and its inverse is also an
elementary matrix of the same type.

The Gauss—Jordan method tells us how to reduce any nonsingular square matrix A to
the identity matrix by a sequence of elementary row operations. Let E|, E,,..., Ey be
the corresponding elementary matrices. The elimination procedure that reduces A to I
amounts to multiplying A by a succession of elementary matrices:

EyEy_q - EyEJA=1. (1.47)
We claim that the product matrix
X=EyEy_, - E,E| (1.48)

is the inverse of A. Indeed, formula (1.47) says that X A = I, and so X is a left inverse.
Furthermore, each elementary matrix has an inverse, and so by (1.41), X itself is invertible,
with

X t'=F'Eyt - By BN (1.49)

Therefore, multiplying formula (1.47), namely X A = I, on the left by X ! leads to A =
X~!'. Lemma 1.20 implies X = A~!, as claimed, completing the proof of Theorem 1.18.
Finally, equating A = X! to the product (1.49), and invoking Lemma 1.24, we have
established the following result.
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Proposition 1.25. Every nonsingular matrix can be written as the product of elementary
matrices.

Example 1.26. The 2 x 2 matrix A = 0 _1) is converted into the identity matrix

s )

3 -1,
and, finally, subtracting 3 times the second row from the first to obtain < > = 1. The

. . 1
by first interchanging its rows, (

0 _1> then scaling the second row by

corresponding elementary matrices are

0 1 10 1 -3
s=(Va) meGd) me(o )

Therefore, by (1.48),

o (1 =3\ (/1 o0\[/0 1\ [ 31
ar=rmrn=(o )6 ) (1 e)=( o)
i1 [0 1\ /1 o0\/1 3\ [0 -1
a=rtmet= (1) (0 ) (6 1)=(1 )

As an application, let us prove that the inverse of a nonsingular triangular matrix is
also triangular. Specifically:

while

Proposition 1.27. If L is a lower triangular matrix with all nonzero entries on the main
diagonal, then L is nonsingular and its inverse L' is also lower triangular. In particular,
if L is lower unitriangular, so is L=!. A similar result holds for upper triangular matrices.

Proof: Tt suffices to note that if L has all nonzero diagonal entries, one can reduce L to the
identity by elementary row operations of types #1 and #3, whose associated elementary
matrices are all lower triangular. Lemma 1.2 implies that the product (1.48) is then
also lower triangular. If L is unitriangular, then all the pivots are equal to 1. Thus, no
elementary row operations of type #3 are required, and so L can be reduced to the identity
matrix by elementary row operations of type #1 alone. Therefore, its inverse is a product
of lower unitriangular matrices, and hence is itself lower unitriangular. A similar argument
applies in the upper triangular case. Q.E.D.

Exercises

1.5.24. (a) Write down the elementary matrix that multiplies the third row of a 4 x 4 matrix
by 7. (b) Write down its inverse.

1.5.25. Find the inverse of each of the following matrices, if possible, by applying the Gauss—
Jordan Method.

1 -2 1 3 3 4 12 3 1 0 -2
(a)< _), (b)( ) (c)<5 5 45 6|, (e 3 -1 0],
s s 51 % % 7 8 9 -2 1 -3
1 2 3 9 1 9 21 0 1 1 -2 1 1
M (355 @14 23], w|]qg o Tlol3 351
2 1 9 0 -1 1 0 0 -1 3 -7 2
0 0 -2 =5 0 2 1 1
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1.5.26. Write each of the matrices in Exercise 1.5.25 as a product of elementary matrices.

IVER|
1.5.27. Express A = 2 as a product of elementary matrices.
1 V3
2 2

1.5.28. Use the Gauss—Jordan Method to find the inverse of the following complex matrices:

o) o) efhr ) el o)

1.5.29. Can two nonsingular linear systems have the same solution and yet not be equivalent?

© 1.5.30.(a) Suppose A is obtained from A by applying an elementary row operation. Let

C = A B, where B is any matrix of the appropriate size. Explain why C = AB can be
obtained by applying the same elementary row operation to C. (b) Illustrate by adding

1 2 -1
—2 times the first row to the third row of A = (2 -3 2) and then multiplying the
0 1 —4
1 -2
result on the right by B = 3 0 |. Check that the resulting matrix is the same as first
-1 1

multiplying A B and then applying the same row operation to the product matrix.

Solving Linear Systems with the Inverse

The primary motivation for introducing the matrix inverse is that it provides a compact
formula for the solution to any linear system with an invertible coefficient matrix.

Theorem 1.28. If the matrix A is nonsingular, then x = A~! b is the unique solution to
the linear system Ax = b.

Proof: We merely multiply the system by A~!, which yields x = A='Ax = A='b. More-
over, Ax = AA~'b = b, proving that x = A~ 'b is indeed the solution. Q.E.D.
For example, let us return to the linear system (1.29). Since we computed the inverse

of its coefficient matrix in (1.46), a “direct” way to solve the system is to multiply the
right-hand side by the inverse matrix:

_ 23 r 2 5
x 18 18 9 6
= e 1 _1 =15

Yy 18 18 9 6 ’
z 2 _1 2 1
9 9 9 3

reproducing our earlier solution.

However, while sesthetically appealing, the solution method based on the inverse matrix
is hopelessly inefficient as compared to direct Gaussian Elimination, and, despite what you
may have been told, should not be used in practical computations. (A complete justification
of this dictum will be provided in Section 1.7.) On the other hand, the inverse does play
a useful role in theoretical developments, as well as providing insight into the design of
practical algorithms. But the principal message of applied linear algebra is that LU de-
composition and Gaussian Elimination are fundamental; matrix inverses are to be avoided
in all but the most elementary computations.

Remark. The reader may have learned a version of the Gauss-Jordan algorithm for
solving a single linear system that replaces the Back Substitution step by a complete
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reduction of the coefficient matrix to the identity. In other words, to solve Ax = b, we
start with the augmented matrix M = (A | b) and use all three types of elementary
row operations to produce (assuming nonsingularity) the fully reduced form (I | d),
representing the trivially soluble, equivalent system x = d, which is the solution to the
original system. However, Back Substitution is more efficient, and it remains the method
of choice in practical computations.

Exercises

1.5.31. Solve the following systems of linear equations by computing the inverses of their
coefficient matrices.

r—y+3z=3, y+ 5z =23,
+2y =1, 3u—2v=2,
(a)w 2y 9 (b) “ 51) 1 (c) x—2y+32=-2, (d) z—y+3z=-1,
r—2y=-—2. =12
Y utov T—2y+z=2. —2z+3y=25.
—4 —2 2u = —2,
r+4y —2z2=3, 9 +3x—|—y 171 v y+f+ ¢ 3
—w = x— z—u=3,
() 20+7y—22=05 (£) T T (g v
—y—z4+w=-7, 20 —y+z+u =3,
—x—5y+2z=-"1.
z—w=6. —x4+3y—2z—u=2.

1.5.32. For each of the nonsingular matrices in Exercise 1.5.25, use your computed inverse to
solve the associated linear system Ax = b, where b is the column vector of the appropriate
size that has all 1’s as its entries.

The L DV Factorization

The second phase of the Gauss—Jordan process leads to a slightly more detailed version of
the LU factorization. Let D denote the diagonal matrix having the same diagonal entries
as U; in other words, D contains the pivots on its diagonal and zeros everywhere else. Let
V' be the upper unitriangular matrix obtained from U by dividing each row by its pivot,
so that V has all 1’s on the diagonal. We already encountered V during the course of
the Gauss—Jordan procedure. It is easily seen that U = DV, which implies the following
result.

Theorem 1.29. A matrix A is regular if and only if it admits a factorization
A=LDYV, (1.50)

where L is a lower unitriangular matrix, D is a diagonal matrix with nonzero diagonal
entries, and V is an upper unitriangular matrix.

For the matrix appearing in Example 1.4, we have U = DV, where

2 1 1 2 0 0 1 44
U=(0 3 01, D=0 3 0], V=10 1 0
0 0 -1 0 0 -1 0 0 1
This leads to the factorization
2 11 1 0 0\ /20 0\/1 3 3
A= |14 5 21 =12 1 0 0 3 0 0 1 0)=LDV.
2 -2 0 1 -1 1 0 0 -1 0 0 1
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Proposition 1.30. If A = LU is regular, then the factors L and U are uniquely deter-
mined. The same holds for the A = L DV factorization.

Proof: Suppose LU = LU. Since the diagonal entries of all four matrices are non-zero,
Proposition 1.27 implies that they are invertible. Therefore,

L'L=L'LUU =L 'LUU '=0U". (1.51)

The left-hand side of the matrix equation (1.51) is the product of two lower unitriangular
matrices, and so, by Lemma 1.2, is itself lower unitriangular. The right-hand side is the
product of two upper triangular matrices, and hence is upper triangular. But the only way
a lower unitriangular matrix can equal an upper triangular matrix is if they both equal
the diagonal identity matrix. Therefore, L™'L = 1 = UU', and so L = L and U = U,
proving the first result. The L DV version is an immediate consequence. Q.E.D.

As you may have guessed, the more general cases requiring one or more row interchanges
lead to a permuted L DV factorization in the following form.

Theorem 1.31. A matrix A is nonsingular if and only if there is a permutation matrix P
such that
PA=LDYV, (1.52)

where L is a lower unitriangular matrix, D is a diagonal matrix with nonzero diagonal
entries, and V' is a upper unitriangular matrix.

Uniqueness does not hold for the more general permuted factorizations (1.33), (1.52),
since there may be several permutation matrices that place a matrix in regular form; an
explicit example can be found in Exercise 1.4.23. Moreover, in contrast to regular Gaussian
Elimination, here the pivots, i.e., the diagonal entries of U, are no longer uniquely defined,
but depend on the particular combination of row interchanges employed during the course
of the computation.

Exercises

1.5.33. Produce the LDV or a permuted L DV factorization of the following matrices:

1 2 0 4 2 1 2 1 1 5
@ (5 1) ®(23) @)(3 A @1 =),

1 -1 1 2 1 0 2 -3
2 -3 2

1 -4 1 5 2 —2 0 1

(e) (1 j ;) Oy o 0 @1 5 9

3 1 1 6 0 1 1 2

1.5.34. Using the L DV factorization for the matrices you found in parts (a-g) of Exercise
1.5.33, solve the corresponding linear systems Ax = b, for the indicated vector b.

| 1 ! -1 -1 i 4
a , (b , (c -3, (d 41, (e -2 1, (f ,
@ (3) o (53) @ ( 2) (d) (_1) (e) ( 5) 05|

-3
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1.6 Transposes and Symmetric Matrices

Another basic operation on matrices is to interchange their rows and columns. If A is an
m X n matrix, then its transpose, denoted by AT, is the n x m matrix whose (i, j) entry
equals the (j,4) entry of A; thus

T
B=A means that bij = aj;.

For example, if

1 4
A—(i g 2), then AT =12 5
3 6

Observe that the rows of A become the columns of A7 and vice versa. In particular, the

transpose of a row vector is a column vector, while the transpose of a column vector is a
1

row vector; if v= [ 2 |, then vI'= (1 2 3). The transpose of a scalar, considered as a
3

1 x 1 matrix, is itself: ¢T = c.

Remark. Most vectors appearing in applied mathematics are column vectors. To
conserve vertical space in this text, we will often use the transpose notation, e.g.,
U1
T .
vV = (111, Vg, v3) , as a compact way of writing the column vector v = | v,
U3
In the square case, transposition can be viewed as “reflecting” the matrix entries across
the main diagonal. For example,

1 2 —1\" 1 3 —2
3 0 5| = 2 0 —4
2 —4 8 15 8

In particular, the transpose of a lower triangular matrix is upper triangular and vice-versa.
Transposing twice returns you to where you started:

(ATYT = A, (1.53)

Unlike inversion, transposition is compatible with matrix addition and scalar multiplica-
tion:

(A+B)T = AT + BT, (cA)T =cAT. (1.54)
Transposition is also compatible with matrix multiplication, but with a twist. Like the
inverse, the transpose reverses the order of multiplication:

(AB)T = BT AT, (1.55)

Indeed, if A has size m x n and B has size n x p, so they can be multiplied, then A” has
size n x m and B” has size p x n, and so, in general, one has no choice but to multiply
BT AT in that order. Formula (1.55) is a straightforward consequence of the basic laws of
matrix multiplication. More generally,

(A1A2 T Ak—lAk)T = AfAf_l T AQTA{'
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An important special case is the product of a row vector vZ' and a column vector w with
the same number of entries. In this case,

viw = (viw)T = wlv, (1.56)
because their product is a scalar and so, as noted above, equals its own transpose.

Lemma 1.32. If A is a nonsingular matrix, so is AT, and its inverse is denoted by
AT = (AT = (AT, (1.57)

Thus, transposing a matrix and then inverting yields the same result as first inverting and
then transposing.

Proof: Let X = (A~1)T. Then, according to (1.55),
XAT = (A H)TAT = (44 HT =17 = 1.
The proof that AT X = T is similar, and so we conclude that X = (AT)~1. Q.E.D.

Exercises
5 0 2

1 2 1 2 -1
(c) (% %) (d) (% : _é) (e) (1 2 =3), (f) (g é) () (? : ;)

1.6.1. Write down the transpose of the following matrices: (a) (1 ), (b) (1 ! ),

1 2 1 3.
and (B A)T without first computing AB or B A.

-1 2
1.6.2. Let A= (3 -1 71), B= ( 2 0). Compute AT and BT. Then compute (AB)T

1.6.3. Show that (AB)T = AT BT if and only if A and B are square commuting matrices.
$ 1.6.4. Prove formula (1.55).

1.6.5. Find a formula for the transposed product (ABC)T in terms of AT, BT and C”.
1.6.6. True or false: Every square matrix A commutes with its transpose AT,

$ 1.6.7. A square matrix is called normal if it commutes with its transpose: AT A = AAT.
Find all normal 2 x 2 matrices.

1.6.8.(a) Prove that the inverse transpose operation (1.57) respects matrix multiplication:

(AB)™T = A=TB~T. (b) Verify this identity for A = (} _é>, B= (? })
1.6.9. Prove that if A is an invertible matrix, then AAT and AT A are also invertible.

1.6.10. If v, w are column vectors with the same number of entries, does v wl =wvl?

1.6.11. Is there a matrix analogue of formula (1.56), namely ATB =BT A?

{ 1.6.12.(a) Let A be an m X n matrix. Let e; denote the 1 X n column vector with a single 1
in the j*0 entry, as in (1.44). Explain why the product Aej equals the jth column of A.
(b) Similarly, let €; be the 1 x m column vector with a single 1 in the ith entry. Explain
why the triple product éiTAej = a;; equals the (4,7) entry of the matrix A.
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¢ 1.6.13. Let A and B be m x n matrices. (a) Suppose that vIAw = v Bw for all vectors
v,w. Prove that A = B. (b) Give an example of two matrices such that v Av = vl Bv
for all vectors v, but A # B.

¢ 1.6.14.(a) Explain why the inverse of a permutation matrix equals its transpose: P~1 = pPT.
(b) 1If A=t = AT is A necessarily a permutation matrix?

{ 1.6.15. Let A be a square matrix and P a permutation matrix of the same size. (a) Explain
why the product APT has the effect of applying the permutation defined by P to the

columns of A. (b) Explain the effect of multiplying PAPT. Hint: Try this on some 3 x 3
examples first.

© 1.6.16. Let v,w be n x 1 column vectors. (a) Prove that in most cases the inverse of the n x n
matrix A = I — vw’ has the form A~ = I — cvw/ for some scalar c. Find all v, w for

which such a result is valid. (b) Illustrate the method when v = (Zlﬁ) and w = <_§ )

(¢) What happens when the method fails?

Factorization of Symmetric Matrices

A particularly important class of square matrices consists of those that are unchanged by
the transpose operation.

Definition 1.33. A matrix is called symmetric if it equals its own transpose: A = AT.

Thus, A is symmetric if and only if it is square and its entries satisfy a;; = a,; for all

1,j. In other words, entries lying in “mirror image” positions relative to the main diagonal
must be equal. For example, the most general symmetric 3 x 3 matrix has the form

a b ¢
A= b d e
c e f

Note that all diagonal matrices, including the identity, are symmetric. A lower or upper
triangular matrix is symmetric if and only if it is, in fact, a diagonal matrix.

The LDV factorization of a nonsingular matrix takes a particularly simple form if
the matrix also happens to be symmetric. This result will form the foundation of some
significant later developments.

Theorem 1.34. A symmetric matrix A is regular if and only if it can be factored as
A=LDL", (1.58)

where L is a lower unitriangular matrix and D is a diagonal matrix with nonzero diagonal
entries.

Proof: We already know, according to Theorem 1.29, that we can factor
A=LDV. (1.59)
We take the transpose of both sides of this equation:
AT = (LD =vIDTLT =VvTDL”, (1.60)
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since diagonal matrices are automatically symmetric: DT = D. Note that V7 is lower
unitriangular, and LT is upper unitriangular. Therefore (1.60) is the L DV factorization
of AT,

In particular, if A is symmetric, then
LDV =A=A"=V"DL".
Uniqueness of the L DV factorization implies that
L=v" and V=1L"

(which are two versions of the same equation). Replacing V by LT in (1.59) establishes
the factorization (1.58). Q.E.D.

Remark. If A= LDL”, then A is necessarily symmetric. Indeed,
AT = (LD LT = (L"Y'DTLT = LD LT = A.

However, not every symmetric matrix has an L D LT factorization. A simple example is

the irregular but nonsingular 2 x 2 matrix <? é)

Example 1.35. The problem is to find the L D LT factorization of the particular sym-

1 2 1
metric matrix A = | 2 6 1 |. This requires performing the usual Gaussian Elimination
1 1 4
algorithm. Subtracting twice the first row from the second and also the first row from the
1 2 1
third produces the matrix [ 0 2 —1 |. We then add one half of the second row of the
0 —1 3
latter matrix to its third row, resulting in the upper triangular form
1 2 1 1 0 0 1 2 1
U=10 2 —-1]=({0 2 0 01 —3 | =DV,
5 5
00 3 0 0 3 0 0 1
which we further factor by dividing each row of U by its pivot. On the other hand, the lower
1 0 0
unitriangular matrix associated with the preceding row operations is L = | 2 1 0],
1 -1 1
2

which, as guaranteed by Theorem 1.34, is the transpose of V = LT. Therefore, the desired
A= LU = LDL" factorizations of this particular symmetric matrix are

1 2 1 1 0 0 1 2 1 1 0 0 1 0 0 1 2 1
2 6 1|=|2 1 0 0 2 —-1]|=|2 1 0 0 2 0 017%
1 5 1 5
1 1 4 1 -5 1 00 3 1 -5 1 0 0 3 00 1
Example 1.36. Let us look at a general 2 x 2 symmetric matrix A = <(Z ZC))
Regularity requires that the first pivot be a # 0. A single row operation will place A
a b
in upper triangular form U = < ac— b2 ), and so A is regular provided ac — b? # 0
0

a
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10
also. The associated lower triangular matrix is L = ( b ) Thus, A = LU, as you can
1

a

0
b2 ) is just the diagonal part of U, and hence U = DL”,

a
check. Finally, D = <0 ac—
a
so that the L D LT factorization is explicitly given by

a b\ _ (1 0\ fa O 1 b
(b C)(% 1) (o “sz> (0 1)' (161)

Exercises

1.6.17. Find all values of a, b, and ¢ for which the following matrices are symmetric:
(a) < 3 a > (b) (—11 b 3) (c) ( : T b—4c)
Za—1 a=2) b 3 0) —a+btec 4 b+3c)
1.6.18. List all symmetric (a) 3 x 3 permutation matrices, (b) 4 X 4 permutation matrices.
1.6.19. True or false: If A is symmetric, then A% s symmetric.
$ 1.6.20. True or false: If A is a nonsingular symmetric matrix, then A=Y is also symmetric.
$ 1.6.21. True or false: If A and B are symmetric n X n matrices, so is A B.

1.6.22.(a) Show that every diagonal matrix is symmetric. (b) Show that an upper (lower)
triangular matrix is symmetric if and only if it is diagonal.

1.6.23. Let A be a symmetric matrix. (a) Show that A™ is symmetric for every nonnegative
integer n. (b) Show that 242 — 3A + 1 is symmetric. (¢) Show that every matrix
polynomial p(A) of A, cf. Exercise 1.2.35, is a symmetric matrix.

1.6.24. Show that if A is any matrix, then K = AT A and L = AAT are both well-defined,
symmetric matrices.

1.6.25. Find the LD LT factorization of the following symmetric matrices:

L1 1 1 -1 0 3
1 1 —2 3 —1 2 2 0
@ (i) o33 © (j 3 3), @ |8 2 20
3 0 0 1
1.6.26. Find the LD L™ factorization of the matrices
2 1 0 0
2 1 2 10 1 2 1 0
1\42:<1 2), My = (1) 2 % and My=|o 1 o 1
0 0 1 2
1 2 1
{ 1.6.27. Prove that the 3 x 3 matrix A = | 2 4 —1 | cannot be factored as A = LDL”.
1 -1 3
© 1.6.28. Skew-symmetric matrices: An n X n matrix J is called skew-symmetric if JT = —J.

(a) Show that every diagonal entry of a skew-symmetric matrix is zero. (b) Write down

an example of a nonsingular skew-symmetric matrix. (¢) Can you find a regular skew-
symmetric matrix? (d) Show that if J is a nonsingular skew-symmetric matrix, then J~! is
also skew-symmetric. Verify this fact for the matrix you wrote down in part (b). (e) Show
that if J and K are skew-symmetric, then so are JT, J+ K, and J — K. What about J K?
(f) Prove that if J is a skew-symmetric matrix, then vZ.J v = 0 for all vectors v € R".
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1.6.29.(a) Prove that every square matrix can be expressed as the sum, A = S + J, of a

symmetric matrix S = ST and a skew-symmetric matrix J = — JT.

1 2 3
(b) Write <:1)) Z) and (4 5 6) as the sum of symmetric and skew-symmetric matrices.
7 8 9

{$ 1.6.30. Suppose A = LU is a regular matrix. Write down the LU factorization of AT, Prove
that A7 is also regular, and its pivots are the same as the pivots of A.

1.7 Practical Linear Algebra

For pedagogical and practical reasons, the examples and exercises we have chosen to illus-
trate the algorithms are all based on relatively small matrices. When dealing with matrices
of moderate size, the differences between the various approaches to solving linear systems
(Gauss, Gauss—Jordan, matrix inverse, and so on) are relatively unimportant, particularly
if one has a decent computer or even hand calculator to do the tedious parts. However,
real-world applied mathematics deals with much larger linear systems, and the design of
efficient algorithms is a must. For example, numerical solution schemes for ordinary differ-
ential equations will typically lead to matrices with thousands of entries, while numerical
schemes for partial differential equations arising in fluid and solid mechanics, weather pre-
diction, image and video processing, quantum mechanics, molecular dynamics, chemical
processes, etc., will often require dealing with matrices with more than a million entries.
It is not hard for such systems to tax even the most sophisticated supercomputer. Thus, it
is essential that we understand the computational details of competing methods in order
to compare their efficiency, and thereby gain some experience with the issues underlying
the design of high performance numerical algorithms.

The most basic question is this: how many arithmetic operations! — in numerical
applications these are almost always performed in floating point with various precision
levels — are required to complete an algorithm? The number will directly influence the
time spent running the algorithm on a computer. We shall keep track of additions and
multiplications separately, since the latter typically take longer to process.? But we shall
not distinguish between addition and subtraction, nor between multiplication and division,
since these typically have the same complexity. We shall also assume that the matrices
and vectors we deal with are generic, with few, if any, zero entries. Modifications of the
basic algorithms for sparse matrices, meaning those that have lots of zero entries, are an
important topic of research, since these include many of the large matrices that appear
in applications to differential equations. We refer the interested reader to more advanced
treatments of numerical linear algebra, such as [21, 40, 66, 89], for such developments.

First, when multiplying an n x n matrix A and an n x 1 column vector b, each entry
of the product Ab requires n multiplications of the form a,; b; and n —1 additions to sum
the resulting products. Since there are n entries, this means a total of n? multiplications

t For simplicity, we will count only the basic arithmetic operations. But it is worth noting
that other issues, such as the number of storage and retrieval operations, may also play a role in
estimating the computational complexity of a numerical algorithm.

POAt least, in traditional computer architectures. New algorithms and new methods for per-
forming basic arithmetic operations on a computer, particularly in high precision arithmetic, make
this discussion trickier. For simplicity, we will stay with the “classical” version here.
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and n(n — 1) = n? — n additions. Thus, for a matrix of size n = 100, one needs about

10,000 distinct multiplications and a similar number of additions. If n = 1,000,000 = 109,
then n? = 10'2, which is phenomenally large, and the total time required to perform the
computation becomes a significant issue .

Let us next look at the (regular) Gaussian Elimination algorithm, referring back to
our pseudocode program for the notational details. First, we count how many arithmetic
operations are based on the jt® pivot m;;. For each of the n — j rows lying below it, we
must perform one division to compute the factor [;; = m,;/m,; used in the elementary
row operation. The entries in the column below the pivot will be set to zero automatically,
and so we need only compute the updated entries lying strictly below and to the right of
the pivot. There are (n — j)? such entries in the coefficient matrix and an additional n — j
entries in the last column of the augmented matrix. Let us concentrate on the former for
the moment. For each of these, we replace m,;, by m;, —1;;m;;, and so must perform one
multiplication and one addition. For the jth pivot, there is a total of (n — j)(n —j + 1)
multiplications — including the initial n — j divisions needed to produce the [;; — and
(n — j)? additions needed to update the coefficient matrix. Therefore, to reduce a regular
n X n matrix to upper triangular form requires a total® of

n 3
Z (n—j)n—j+1)= z 3 t multiplications, and
j=1
1.62
& e 213 —=3n%+n . (1.62)
Z (n—j)° = 6 additions.
j=1

Thus, when n is large, both involve approximately %n3 operations.
We should also be keeping track of the number of operations on the right-hand side of
the system. No pivots appear there, and so there are
n 2

> —j) =" (1.63)

j=1

multiplications and the same number of additions required to produce the right-hand side
in the resulting triangular system U x = c. For large n, this count is considerably smaller
than the coefficient matrix totals (1.62). We note that the Forward Substitution equations
(1.26) require precisely the same number of arithmetic operations to solve Lc = b for the
right-hand side of the upper triangular system. Indeed, the j*h equation

j—1
k=1

requires j — 1 multiplications and the same number of additions, giving a total of
n 2

Y i-D="—

i=1

operations of each type. Therefore, to reduce a linear system to upper triangular form,
it makes no difference in computational efficiency whether one works directly with the

T See Exercise 1.7.8 for more sophisticated computational algorithms that can be employed to
(slightly) speed up multiplication of large matrices.

¥ In Exercise 1.7.4, the reader is asked to prove these summation formulaes by induction.
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augmented matrix or employs Forward Substitution after the LU factorization of the co-
efficient matrix has been established.

The Back Substitution phase of the algorithm can be similarly analyzed. To find the

value of
1 n
YT G D Uk
77 k=j+1
once we have computed = jt1r e Ty, Tquires n—j+1 multiplications/divisions and n — j
additions. Therefore, Back Substitution requires

n 2
Z (n—j+1)= z 2+n multiplications, along with
j=1
- N (L.64)
Z (n—7j)= 5 additions.
j=1

For n large, both of these are approximately equal to %nQ. Comparing the counts, we

conclude that the bulk of the computational effort goes into the reduction of the coefficient
matrix to upper triangular form.

Combining the two counts (1.63-64), we discover that, once we have computed the
A = LU decomposition of the coefficient matrix, the Forward and Back Substitution
process requires n? multiplications and n? — n additions to solve a linear system Ax = b.
This is exactly the same as the number of multiplications and additions needed to compute
the product A='b. Thus, even if we happen to know the inverse of A, it is still just as
efficient to use Forward and Back Substitution to compute the solution!

On the other hand, the computation of A~! is decidedly more inefficient. There are two
possible strategies. First, we can solve the n linear systems (1.45), namely

Ax =e;, i=1,...,n, (1.65)

for the individual columns of A~!. This requires first computing the LU decomposition,
which uses about %n?’ multiplications and a similar number of additions, followed by apply-
ing Forward and Back Substitution to each of the systems, using n-n? = n? multiplications
and n(n? —n) ~ n?® additions, for a grand total of about %n?’ operations of each type in
order to compute A~!. Gauss—Jordan Elimination fares no better (in fact, slightly worse),
also requiring about the same number, %n3, of each type of arithmetic operation. Both
algorithms can be made more efficient by exploiting the fact that there are lots of zeros
on the right-hand sides of the systems (1.65). Designing the algorithm to avoid adding
or subtracting a preordained 0, or multiplying or dividing by a preordained +1, reduces
the total number of operations required to compute A~! to exactly n? multiplications and
n(n—1)? ~ n3 additions. (Details are relegated to the exercises.) And don’t forget that we
still need to multiply A~!b to solve the original system. As a result, solving a linear system
with the inverse matrix requires approximately three times as many arithmetic operations,
and so would take three times as long to complete, as the more elementary Gaussian Elim-
ination and Back Substitution algorithm. This justifies our earlier contention that matrix
inversion is inefficient, and, except in very special situations, should never be used for
solving linear systems in practice.
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Exercises

1.7.1. Solve the following linear systems by (i) Gaussian Elimination with Back Substitution;
(ii) the Gauss—Jordan algorithm to convert the augmented matrix to the fully reduced
form ( I | x) with solution x; (i%7) computing the inverse of the coefficient matrix,
and then multiplying it by the right-hand side. Keep track of the number of arithmetic
operations you need to perform to complete each computation, and discuss their relative

efficiency. , \ 9% — 4y + 6z =6, v — 3y _
€T — =
(a) 3 er . (b) 3x—3y+4z=-1, (¢) 3x—Ty+5z=-1,
x = -7,
Y —4dx+3y—4z =25, —2x+6y—5z=0.

1.7.2.(a) Let A be an n x n matrix. Which is faster to compute, A% or A=? Justify
your answer. (b) What about A3 versus A71? (¢) How many operations are needed

to compute A*? Hint: When k > 3, you can get away with less than k£ — 1 matrix
multiplications!

1.7.3. Which is faster: Back Substitution or multiplying a matrix by a vector? How much faster?
& 1.7.4. Use induction to prove the summation formulas (1.62), (1.63) and (1.64).

© 1.7.5. Let A be a general n x n matrix. Determine the exact number of arithmetic operations
needed to compute A™! using (a) Gaussian Elimination to factor PA = LU and then
Forward and Back Substitution to solve the n linear systems (1.65); (b) the Gauss—
Jordan method. Make sure your totals do not count adding or subtracting a known 0, or
multiplying or dividing by a known +1.

1.7.6. Count the number of arithmetic operations needed to solve a system the “old-fashioned”
way, by using elementary row operations of all three types, in the same order as the Gauss—

Jordan scheme, to fully reduce the augmented matrix M = (A | b) to the form ( I| d),
with x = d being the solution.

1.7.7. An alternative solution strategy, also called Gauss—Jordan in some texts, is, once a pivot
is in position, to use elementary row operations of type #1 to eliminate all entries both
above and below it, thereby reducing the augmented matrix to diagonal form (D | c)
where D = diag(dy,...,d,,) is a diagonal matrix containing the pivots. The solutions
x; = ¢;/d; are then obtained by simple division. Is this strategy more efficient, less efficient,

or the same as Gaussian Elimination with Back Substitution? Justify your answer with an
exact operations count.

© 1.7.8. Here, we describe a remarkable algorithm for matrix multiplication discovered by

_ (A A _ (B B _ (G Gy _
Strassen, [82]. LetA—(A3 A4>’B_(B3 B, ,and C' = C; = AB

be block matrices of size n = 2m, where all blocks are of size m x m. (a) Let D; =

(A + Ay)(By + By), Dy = (Ay — Ag)(By + By), Dy = (Ay — Ay)(Bs + By),

Dy = (A + A3) By, Dy = (A3+ Ay) By, Dg= Ay (B, — B3), Dy = A;(By — By). Show
that C; = Dy + D3 — Dy — Dy, Cy =Dy +D,, Cq=Ds— Dy, Cy =Dy —Dy— D5+ D,.
(b) How many arithmetic operations are required when A and B are 2 x 2 matrices? How

does this compare with the usual method of multiplying 2 x 2 matrices?

(¢) In the general case, suppose we use standard matrix multiplication for the matrix
products in Dy, ..., D,. Prove that Strassen’s Method is faster than the direct algorithm
for computing A B by a factor of ~ % (d) When A and B have size n X n with n = 27,
we can recursively apply Strassen’s Method to multiply the 27~ % 27! plocks A;, B;.

Prove that the resulting algorithm requires a total of 7" = n'°82 7 = n2-8073% myltiplications
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and 6 (7771 —4"71) < 7" = nl°827 additions/subtractions, versus n® multiplications and
n® —n? ~ n? additions for the ordinary matrix multiplication algorithm. How much faster
is Strassen’s Method when n = 2107 2257 21007 (e) How might you proceed if the size of
the matrices does not happen to be a power of 27 Further developments of these ideas can
be found in [11, 40].

Tridiagonal Matrices

Of course, in special cases, the actual arithmetic operation count might be considerably
reduced, particularly if A is a sparse matrix with many zero entries. A number of specialized
techniques have been designed to handle sparse linear systems. A particularly important
class consists of the tridiagonal matrices

qa T
P1 9 To
p q r
A= L (1.66)

Pp—o dp—1 Tp—1

Prn—1 ap
with all entries zero except for those on the main diagonal, namely a,; = ¢;, the subdi-
agonal, meaning the n — 1 entries a,,, ; = p, immediately below the main diagonal, and
the superdiagonal, meaning the entries a, ;,; = r; immediately above the main diagonal.
(Blanks are used to indicate 0 entries.) Such matrices arise in the numerical solution of
ordinary differential equations and the spline fitting of curves for interpolation and com-
puter graphics. If A = LU is regular, it turns out that the factors are lower and upper
bidiagonal matrices, of the form

1 dy  uy
L1 dy u,
l 1 dy u
L= R , U= T . (167)
ln72 1 dnfl ]
ln—l 1 dn
Multiplying out LU and equating the result to A leads to the equations
dy = qy, Uy =T, lydy =pq,
Liuy +dy = gy, Uy = Tg, lydy = py,
lj—luj—l +dj =4, U; =Ty, ljdj =Dy (1.68)
ln72 un72 + dnfl = qn717 unfl = Tnfl’ lnfl dnfl = pn717

ln—l Up—1 + dn = qp-
These elementary algebraic equations can be successively solved for the entries of L and U
in the following order: dy,u,,l;, dy, Us, 15, dg,us ... . The original matrix A is regular pro-
vided none of the diagonal entries d;, d,, ... are zero, which allows the recursive procedure
to successfully proceed to termination.
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Once the LU factors are in place, we can apply Forward and Back Substitution to solve
the tridiagonal linear system Ax = b. We first solve the lower triangular system Lc = b
by Forward Substitution, which leads to the recursive equations

¢, = by, Cy =by — 1 ¢y, ¢, =b,—1, ¢ (1.69)

n n n—1"*n—1-
We then solve the upper triangular system U x = ¢ by Back Substitution, again recursively:

— U X Ci — U T
_ on n—1 n—1"n 1 142
xn = —, xnfl =, 271 = 7d . (170)
1

As you can check, there are a total of 5n — 4 multiplications/divisions and 3n — 3 addi-

tions/subtractions required to solve a general tridiagonal system of n linear equations —
a striking improvement over the general case.

Example 1.37. Consider the n x n tridiagonal matrix

4 1
1 4
1

—os
e~ =
—

in which the diagonal entries are all g; = 4, while the entries immediately above and below
the main diagonal are all p, = r, = 1. According to (1.68), the tridiagonal factorization
(1.67) has uy =uy = --- =wu,_; =1, while

d, =4, L, =1/d, di, =4—1, j=1,2,...,n—1.

The computed values are

j \ 1 2 3 4 5 6 7
d; | 4.0 3.75 3.733333  3.732143  3.732057  3.732051  3.732051
l. 25 266666 267857 267942 267948 267949 .267949

J

These converge rapidly to

d — 2++/3=3.732050..., L — 2—/3=.267949...,
which makes the factorization for large n almost trivial. The numbers 2 + V3 are the roots
of the quadratic equation 22 — 42 + 1 = 0, and are characterized as the fixed points of the
nonlinear iterative system d; ; =4 —1/d;.
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Exercises
1.7.9. For each of the following tridiagonal systems find the LU factorization of the coefficient
1 2 0 4
matrix, and then solve the system. (a) | -1 -1 1 |x=|-1][,
0 -2 3 —6
1 -1 00 1 1 2 0 0 0
-1 2 10| _1o -1 -3 0 0] _|-2
B 1 s X e @ 0 21 o4 1 XT3
0 0 -5 6 7 0 0 -1 -1 1

1.7.10. True or false: (a) The product of two tridiagonal matrices is tridiagonal.
(b) The inverse of a tridiagonal matrix is tridiagonal.

1.7.11.(a) Find the LU factorization of the n x n tridiagonal matrix A, with all 2’s along the
diagonal and all —1’s along the sub- and super-diagonals for n = 3,4, and 5. (b) Use
your factorizations to solve the system A, x = b, where b = (1,1,1,..., 1)T. (c) Can
you write down the LU factorization of A, for general n? Do the entries in the factors

approach a limit as n gets larger and larger? (d) Can you find the solution to the system

A, x=b=(1,1,1,. ..,l)T for general n?
& 1.7.12. Answer Exercise 1.7.11 if the super-diagonal entries of A, are changed to +1.
41 0 1 4 1 0 0 1
4 1 1 141 0 1 4 1 0 0
# 1.7.13. Find the LU factorizations of 1 4 1], 10 1 4 1 0
0 1 4 1
1 1 4 10 1 4 00 1 4 1
00 1 4
Do you see a pattern? Try the 6 x 6 version. The following exercise should now be clear.
9 " Py
Py q@2 T2
b3 43 T3
© 1.7.14. A tricirculant matriz C = . . . is tridiagonal except

Pp—1 dp—1 Tp—1
for its (1,n) and (n, 1) entries. Tricirculant matrices arise in the numerical solution of
periodic boundary value problems and in spline interpolation.
(a) Prove that if C' = LU is regular, its factors have the form

1 dy  uy vy
o1 dy g Vg
Iy 1 3 Ug U3

13 1 . . .

) .. :
' dn—2 Up_g VUn_2
ln*Q 1 dnfl Up—1

my Mg Mg ... My, o L, 1 1 dy,

(b) Compute the LU factorization of the n x n tricirculant matrix

1 -1 1
—1 2 -1
-1 3 -1
C, = . . . for n = 3,5, and 6. What goes wrong when n = 47
-1 n—1 -1
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Q 1.7.15. A matrix A is said to have bandwidth k if all entries that are more than k slots away
from the main diagonal are zero: a;; = 0 whenever [i — j| > k. (a) Show that a tridiagonal
matrix has band width 1. (b) Write down an example of a 6 x 6 matrix of band width 2
and one of band width 3. (c¢) Prove that the L and U factors of a regular banded matrix
have the same band width. (d) Find the LU factorization of the matrices you wrote down
in part (b). (e) Use the factorization to solve the system Ax = b, where b is the column
vector with all entries equal to 1. (f) How many arithmetic operations are needed to solve
Ax = b if A is banded? (g) Prove or give a counterexample: the inverse of a banded
matrix is banded.

Pivoting Strategies

Let us now investigate the practical side of pivoting. As we know, in the irregular situations
when a zero shows up in a diagonal pivot position, a row interchange is required to proceed
with the elimination algorithm. But even when a nonzero pivot element is in place, there
may be good numerical reasons for exchanging rows in order to install a more desirable
element in the pivot position. Here is a simple example:

Olx+1.6y=32.1, x+ .6y =22 (1.71)
The exact solution to the system is easily found:
z = 10, y = 20.

Suppose we are working with a very primitive calculator that only retains 3 digits of
accuracy. (Of course, this is not a very realistic situation, but the example could be
suitably modified to produce similar difficulties no matter how many digits of accuracy our
computer is capable of retaining.) The augmented matrix is

01 1.6 | 32.1
1 .6 22 )

Choosing the (1,1) entry as our pivot, and subtracting 100 times the first row from the
second produces the upper triangular form

.01 1.6 32.1
0 —1594 | —3188 /)"

Since our calculator has only three—place accuracy, it will round the entries in the second
row, producing the augmented coefficient matrix

.01 1.6 32.1
0 —159.0 | —3190 /"
The solution by Back Substitution gives

y = 3190/159 = 20.0628 ... ~ 20.1, and then
2 =100(32.1— 1.6y) = 100 (32.1 — 32.16) ~ 100 (32.1 — 32.2) = — 10.

The relatively small error in y has produced a very large error in  — not even its sign is
correct!

The problem is that the first pivot, .01, is much smaller than the other element, 1, that
appears in the column below it. Interchanging the two rows before performing the row
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Gaussian Elimination With Partial Pivoting

start
for i=1 ton
set r(i) =1
next ¢
for j=1 ton
if m,q ; =0 for all i >j, stop; print “A is singular”

(i
choose( ¢ >j such that m, ; is maximal
interchange 7 (i) <— 7(j)
for i=j5+1 ton

set L) = M)/ M)
for k=741 ton+1
Set My(iye = Mr(iyk — Lo(i)i M)k
next k
next i
next j

end

operation would resolve the difficulty — even with such an inaccurate calculator! After

the interchange, we have
1 6 22
01 16 | 32.1)°

which results in the rounded-off upper triangular form

1 6 22 N 1 6 22
0 1.594 | 31.88 o 0 159 | 319 )"

The solution by Back Substitution now gives a respectable answer:
y =31.9/1.59 = 20.0628 ... ~ 20.1, r=22—6y=22—-12.06 ~ 22—12.1=9.9.

The general strategy, known as Partial Pivoting, says that at each stage, we should
use the largest (in absolute value) legitimate (i.e., in the pivot column on or below the
diagonal) element as the pivot, even if the diagonal element is nonzero. Partial Pivoting
can help suppress the undesirable effects of round-off errors during the computation.

In a computer implementation of pivoting, there is no need to waste processor time
physically exchanging the row entries in memory. Rather, one introduces a separate array
of pointers that serve to indicate which original row is currently in which permuted position.
More concretely, one initializes n row pointers r(1) = 1,...,7(n) = n. Interchanging
row ¢ and row j of the coefficient or augmented matrix is then accomplished by merely
interchanging r(¢) and r(j). Thus, to access a matrix element that is currently in row 4 of
the augmented matrix, one merely retrieves the element that is in row r(4) in the computer’s
memory. An explicit implementation of this strategy is provided in the accompanying
pseudocode program.
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Partial pivoting will solve most problems, although there can still be difficulties. For
instance, it does not accurately solve the system

102 + 1600y = 32100,  x+ .6y = 22,

obtained by multiplying the first equation in (1.71) by 1000. The tip-off is that, while the
entries in the column containing the pivot are smaller, those in its row are much larger. The
solution to this difficulty is Full Pivoting, in which one also performs column interchanges
— preferably with a column pointer — to move the largest legitimate element into the
pivot position. In practice, a column interchange amounts to reordering the variables in
the system, which, as long as one keeps proper track of the order, also doesn’t change the
solutions. Thus, switching the order of z, y leads to the augmented matrix

1600 10 | 32100
6 1 22 )

in which the first column now refers to y and the second to x. Now Gaussian Elimination
will produce a reasonably accurate solution to the system.

Finally, there are some matrices that are hard to handle even with sophisticated pivoting
strategies. Such ill-conditioned matrices are typically characterized by being “almost”
singular. A famous example of an ill-conditioned matrix is the n x n Hilbert matriz

L 1

2 3 4 n

N 1

2 3 4 5 n+1

[ T 1

3 4 5 6 n+2

4 5 6 7 n+3

11 1 1 1

n n+l n+2 n+3 7 2n-—-1

Later, in Proposition 3.40, we will prove that H,, is nonsingular for all n. However, the solu-
tion of a linear system whose coefficient matrix is a Hilbert matrix H,,, even for moderately
large n, is a very challenging problem, even using high precision computer arithmetic’. This
is because the larger n is, the closer H,, is, in a sense, to being singular. A full discussion
of the so-called condition number of a matrix can be found in Section 8.7.

The reader is urged to try the following computer experiment. Fix a moderately large
value of n, say 20. Choose a column vector x with n entries chosen at random. Compute
b = H, x directly. Then try to solve the system H, x = b by Gaussian Elimination, and
compare the result with the original vector x. If you obtain an accurate solution with
n = 20, try n = 50 or 100. This will give you a good indicator of the degree of arithmetic
precision used by your computer hardware, and the accuracy of the numerical solution
algorithm(s) in your software.

f In computer algebra systems such as MAPLE and MATHEMATICA, one can use exact rational
arithmetic to perform the computations. Then the important issues are time and computational
efficiency. Incidentally, there is an explicit formula for the inverse of a Hilbert matrix, which
appears in Exercise 1.7.23.
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Exercises

1.7.16.(a) Find the exact solution to the linear system <1(1) 2’;) (z) = (—éOO) (b) Solve

the system using Gaussian Elimination with 2-digit rounding. (¢) Solve the system using
Partial Pivoting and 2-digit rounding. (d) Compare your answers and discuss.

1.7.17.(a) Find the exact solution to the linear system x — 5y — z = 1, %:c — %y +z =0,

22 —y = 3. (b) Solve the system using Gaussian Elimination with 4-digit rounding.

(c) Solve the system using Partial Pivoting and 4-digit rounding. Compare your answers.
1.7.18. Answer Exercise 1.7.17 for the system

r+4y —3z = -3, 25x 4+ 97y — 35z = 39, 35x — 22y + 33z = —15.

1.7.19. Employ 2 digit arithmetic with rounding to compute an approximate solution of the

linear system 0.2x + 2y — 3z = 6, dx + 43y + 272z = 58, 3x + 23y — 42z = —87,

using the following methods: (a) Regular Gaussian Elimination with Back Substitution;

(b) Gaussian Elimination with Partial Pivoting; (¢) Gaussian Elimination with Full

Pivoting. (d) Compare your answers and discuss their accuracy.

1.7.20. Solve the following systems by hand, using pointers instead of physically interchanging

A N AN
therows: (a) [1 -1 1 yl=121|, (b Yl = ,
3 1 0 e 1 1 0 2 0 z 0
—1 0 0 3 w 1
3 -1 2 -1 T 1 0 -1 5 —1 T 1
6 -2 4 3lly] (2 1 -2 o0 1|[ly]| |[|-2
@1 3 1 o =2||z|=[1] Dl2 -3 3 —1||z]|=| 3|
—1 3 =2 0 w 1 2 0 1 -1 w 0
1.7.21. Solve the following systems using Partial Pivoting and pointers:
1 2 -1 T 1
1 5 x 3
@ (5 2)(0)=(3) o1 -2 1][v)=3].
2 =3)\y 2 3 5 —1)\z 1
; :g’ 8 _1 v _; 01 4 2\ [z 1
©|_ 7 ¢ 4 _o Z =l o0 @ 2 802 3|ly|=| 2|
s o0 o /02 . 7 .03 250)\ 2 122

1.7.22. Use Full Pivoting with pointers to solve the systems in Exercise 1.7.21.

& 1.7.23. Let H,, be the n x n Hilbert matrix (1.72), and K, = H;l its inverse. It can be
proved, [40; p. 513], that the (i,7) entry of K, is

s () ()

!
where (: = ﬁ is the standard binomial coefficient. (Warning. Proving this
'(n—Fk)!

formula is a nontrivial combinatorial challenge.) (a) Write down the inverse of the Hilbert
matrices Hy, H,, Hs using the formula or the Gauss—Jordan Method with exact rational
arithmetic. Check your results by multiplying the matrix by its inverse.

(b) Recompute the inverses on your computer using floating point arithmetic and compare
with the exact answers. (c) Try using floating point arithmetic to find K, and Ky,. Test
the answer by multiplying the Hilbert matrix by its computed inverse.

& 1.7.24.(a) Write out a pseudo-code algorithm, using both row and column pointers, for
Gaussian Elimination with Full Pivoting. (b) Implement your code on a computer, and
try it on the systems in Exercise 1.7.21.
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1.8 General Linear Systems

So far, we have treated only linear systems involving the same number of equations as
unknowns, and then only those with nonsingular coefficient matrices. These are precisely
the systems that always have a unique solution. We now turn to the problem of solving a
general linear system of m equations in n unknowns. The cases not treated as yet are non-
square systems, with m # n, as well as square systems with singular coefficient matrices.
The basic idea underlying the Gaussian Elimination algorithm for nonsingular systems can
be straightforwardly adapted to these cases, too. One systematically applies the same two
types of elementary row operation to reduce the coefficient matrix to a simplified form that
generalizes the upper triangular form we aimed for in the nonsingular situation.

Definition 1.38. An m x n matrix U is said to be in row echelon form if it has the
following “staircase” structure:

0o 0 ... 0 ® ... * * . .. * x k... %

0 0 0 0 0 ® * x *
U= L

0 0 0 0 0 0 0| ® =« .

0 0 0 0 0 0 0 0 0 0

0 0 ... 0 0 ... 0 0o ... ... 0 0 0 ... 0

The entries indicated by (%) are the pivots, and must be nonzero. The first r rows of U each
contain exactly one pivot, but not all columns are required to include a pivot entry. The
entries below the “staircase”, indicated by the solid line, are all zero, while the non-pivot
entries above the staircase, indicated by stars, can be anything. The last m — r rows are
identically zero, and do not contain any pivots. There may, in exceptional situations, be
one or more all zero initial columns. Here is an explicit example of a matrix in row echelon
form: 3 1 04 5 -7

0 -1 -2 1 8 0

0O 0 00 2 —4

0O 0 0 0 0 O

The three pivots are the first nonzero entries in the three nonzero rows, namely, 3, —1, 2.

Slightly more generally, U may have several initial columns consisting of all zeros. An
example is the row echelon matrix

00 3 5 -2 0
0000 5 3
0000 0 =7)
0000 0 O

which also has three pivots. The latter matrix corresponds to a linear system in which the
first two variables do not appear in any of the equations. Thus, such row echelon forms
almost never appear in applications.
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Proposition 1.39. Every matrix can be reduced to row echelon form by a sequence of
elementary row operations of types #1 and #2.

In matrix language, Proposition 1.39 implies that if A is any m X n matrix, then there
exists an m X m permutation matrix P and an m x m lower unitriangular matrix L such
that

PA=LU, (1.73)

where U is an m X n row echelon matrix. The factorization (1.73) is not unique. Observe
that P and L are square matrices of the same size, while A and U are rectangular, also of
the same size. As with a square matrix, the entries of L below the diagonal correspond to
the row operations of type #1, while P keeps track of row interchanges. As before, one
can keep track of row interchanges with a row pointer.

A constructive proof of this result is based on the general Gaussian Elimination algo-
rithm, which proceeds as follows. Starting on the left of the matrix, one searches for the
first column that is not identically zero. Any of the nonzero entries in that column may
serve as the pivot. Partial pivoting indicates that it is probably best to choose the largest
one, although this is not essential for the algorithm to proceed. One places the chosen
pivot in the first row of the matrix via a row interchange, if necessary. The entries below
the pivot are made equal to zero by the appropriate elementary row operations of type #1.
One then proceeds iteratively, performing the same reduction algorithm on the submatrix
consisting of all entries strictly to the right and below the pivot. The algorithm terminates
when either there is a nonzero pivot in the last row, or all of the rows lying below the last
pivot are identically zero, and so no more pivots can be found.

Example 1.40. The easiest way to learn the general Gaussian Elimination algorithm is
to follow through an illustrative example. Consider the linear system
r+3y+2z—u =a,
2¢+6y+z+4u+3v=0,
—rz—-3y—3z+3utv=c,
3x+9y+8z—Tu+2v=d,

(1.74)

of 4 equations in 5 unknowns, where a, b, ¢, d are given numbers’. The coefficient matrix is

1 3 2 -1 0
2 6 1 4 3
A= 1 5 a2 3 1] (1.75)

3 9 8 -7 2
To solve the system, we introduce the augmented matrix

1 3 2 -1 0] a

2 6 1 4 3 b
-1 -3 -3 3 1 c|’

3 9 8§ =7 2 1d

obtained by appending the right-hand side of the system. The upper left entry is nonzero,
and so can serve as the first pivot. We eliminate the entries below it by elementary row

T It will be convenient to work with the right-hand side in general form, although the reader
may prefer, at least initially, to assign numerical values to a, b, c, d.
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operations, resulting in

1 3 2 -1 0 a

0 0 -3 6 3 b—2a
0 0 -1 2 1 c+a
0 0 2 —4 2 d—3a

Now, the second column contains no suitable nonzero entry to serve as the second pivot.
(The top entry already lies in a row containing a pivot, and so cannot be used.) Therefore,
we move on to the third column, choosing the (2, 3) entry, —3, as our second pivot. Again,
we eliminate the entries below it, leading to

3 2 =1 0 a

0 -3 6 3 b—2a
1 5

0 0 c—3b+3a

0

0
0 4 | d+2b—2a

1
0
0
0 3

0
0
The fourth column has no pivot candidates, and so the final pivot is the 4 in the fifth

column. We interchange the last two rows in order to place the coefficient matrix in row
echelon form:

13 2 -10]a
00 -3 6 3| 0b-2a

00 0 04 |d+2b-2Laq (1.76)
00 0 00 /|c—21b+2a

There are three pivots, 1,—3, and 4, sitting in positions (1,1), (2,3), and (3,5). Note
the staircase form, with the pivots on the steps and everything below the staircase being
zero. Recalling the row operations used to construct the solution (and keeping in mind
that the row interchange that appears at the end also affects the entries of L), we find the
factorization (1.73) takes the explicit form

1 0 0 0 1 3 2 -1 0 1 0 0 0 13 2 -1 0
01 00 2 6 1 4 31 2 100 0 0 -3 6 3
0 0 0 1 -1 -3 -3 3 1] 3 —% 10 00 0 0 4
0 010 39 8 -7 2 -1 % 0 1 00 0 00

We shall return to find the solution to our linear system after a brief theoretical interlude.

Warning. In the augmented matrix, pivots can never appear in the last column, repre-
senting the right-hand side of the system. Thus, even if ¢ — %b + %a # 0, that entry does
not qualify as a pivot.

We now introduce the most important numerical quantity associated with a matrix.
Definition 1.41. The rank of a matrix is the number of pivots.

For instance, the rank of the matrix (1.75) equals 3, since its reduced row echelon form,
i.e., the first five columns of (1.76), has three pivots. Since there is at most one pivot per
row and one pivot per column, the rank of an m x n matrix is bounded by both m and n,
and so

0 <r =rank A < min{m,n}. (1.77)

The only m x n matrix of rank 0 is the zero matrix O — which is the only matrix without
any pivots.
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Proposition 1.42. A square matrix of size n x n is nonsingular if and only if its rank is
equal to n.

Indeed, the only way an n X n matrix can end up having n pivots is if its reduced row
echelon form is upper triangular with nonzero diagonal entries. But a matrix that reduces
to such triangular form is, by definition, nonsingular.

Interestingly, the rank of a matrix does not depend on which elementary row operations
are performed along the way to row echelon form. Indeed, performing a different sequence of
row operations — say using Partial Pivoting versus no pivoting — can produce a completely
different reduced form. The remarkable result is that all such row echelon forms end up
having exactly the same number of pivots, and this number is the rank of the matrix. A
formal proof of this fact will appear in Chapter 2; see Theorem 2.49.

Once the coefficient matrix has been reduced to row echelon form (U | ¢ ), the solution
to the equivalent linear system U x = ¢ proceeds as follows. The first step is to see whether
there are any equations that do not have a solution. Suppose one of the rows in the
echelon form U is identically zero, but the corresponding entry in the last column c of
the augmented matrix is nonzero. What linear equation would this represent? Well, the
coefficients of all the variables are zero, and so the equation is of the form

0=c, (1.78)

where 7 is the row’s index. If ¢; # 0, then the equation cannot be satisfied — it is
inconsistent. The reduced system does not have a solution. Since the reduced system was
obtained by elementary row operations, the original linear system is incompatible, meaning
it also has no solutions. Note: It takes only one inconsistency to render the entire system
incompatible. On the other hand, if ¢; = 0, so the entire row in the augmented matrix is
zero, then (1.78) is merely 0 = 0, and is trivially satisfied. Such all-zero rows do not affect
the solvability of the system.

In our example, the last row in the echelon form (1.76) is all zero, and hence the
last entry in the final column must also vanish in order that the system be compatible.
Therefore, the linear system (1.74) will have a solution if and only if the right-hand sides
a, b, ¢, d satisfy the linear constraint

5a—1b+ec=0. (1.79)

In general, if the system is incompatible, there is nothing else to do. Otherwise, every
all zero row in the row echelon form of the coefficient matrix also has a zero entry in the
last column of the augmented matrix; the system is compatible and admits one or more
solutions. (If there are no all-zero rows in the coefficient matrix, meaning that every row
contains a pivot, then the system is automatically compatible.) To find the solution(s), we
split the variables in the system into two classes.

Definition 1.43. In a linear system Ux = c¢ in row echelon form, the variables cor-
responding to columns containing a pivot are called basic variables, while the variables
corresponding to the columns without a pivot are called free variables.

The solution to the system then proceeds by an adaptation of the Back Substitution
procedure. Working in reverse order, each nonzero equation is solved for the basic variable
associated with its pivot. The result is substituted into the preceding equations before
they in turn are solved. The solution then specifies all the basic variables as certain
combinations of the remaining free variables. As their name indicates, the free variables, if
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any, are allowed to take on any values whatsoever, and so serve to parameterize the general
solution to the system.

Example 1.44. Let us illustrate the solution procedure with our particular system

(1.74). The values a =0, b =3, c =1, d = 1, satisfy the consistency constraint (1.79), and
the corresponding reduced augmented matrix (1.76) is

13 2 -1 010
00 -3 6 3|3
00 0 043
00 0 0010

The pivots are found in columns 1,3,5, and so the corresponding variables, z, z,v, are
basic; the other variables, y, u, corresponding to the non-pivot columns 2,4, are free. Our
task is to solve the reduced system

r+3y+2z—u =0,
—3z+6u—+3v =3,

4dv =3,

0=0,

for the basic variables x, z, v in terms of the free variables y, u. As before, this is done in the
reverse order, by successively substituting the resulting values in the preceding equation.
The result is the general solution

v:%, z:—1+2u+v=—i+2u, x:—3y—2z—|—u:%—3y—3u.

The free variables y,u remain completely arbitrary; any assigned values will produce a

solution to the original system. For instance, if y = —1,u = m, then z = % — 3,
z = —% + 27, v = %. But keep in mind that this is merely one of an infinite number

of valid solutions.

In general, if the m xn coefficient matrix of a system of m linear equations in n unknowns
has rank r, there are m —r all-zero rows in the row echelon form, and these m — r equations
must have zero right-hand side in order that the system be compatible and have a solution.
Moreover, there is a total ofr basic variables and n — r free variables, and so the general
solution depends upon n — r parameters.

Summarizing the preceding discussion, we have learned that there are only three possible
outcomes for the solution to a system of linear equations.

Theorem 1.45. A system Ax = b of m linear equations in n unknowns has either
(i) exactly one solution, (i) infinitely many solutions, or (#77) no solution.

Case (#41) occurs if the system is incompatible, producing a zero row in the echelon form
that has a nonzero right-hand side. Case (ii) occurs if the system is compatible and there
are one or more free variables, and so the rank of the coefficient matrix is strictly less than
the number of columns: r < n. Case (i) occurs for nonsingular square coefficient matrices,
and, more generally, for compatible systems for which » = n, implying there are no free
variables. Since r < m, this case can arise only if the coefficient matrix has at least as
many rows as columns, i.e., the linear system has at least as many equations as unknowns.
A linear system can never have a finite number — other than 0 or 1 — of solutions. As
a consequence, any linear system that admits two or more solutions automatically has
infinitely many!
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w1y

No Solution Unique Solution Infinitely Many Solutions

Figure 1.1.  Intersecting Planes.

Warning. This property requires linearity, and is not valid for nonlinear systems. For
instance, the real quadratic equation 2 + x — 2 = 0 has exactly two real solutions: = = 1
and z = —2.

Example 1.46. Consider the linear system
y+4z=a, 3r—y+2z=0, r+y+6z=c,

consisting of three equations in three unknowns. The augmented coefficient matrix is

0 1 4] a
3 -1 2 b
1 1 6

Interchanging the first two rows, and then eliminating the elements below the first pivot
leads to

3 -1 2|0
0 1 4 a

4 16 1
0 3 3 [c—3gb

The second pivot is in the (2,2) position, but after eliminating the entry below it, we find
the row echelon form to be

3 -1 2|0
0 1 4 a

1 4
0 0 0 Cc — 3 b— 3 a
Since there is a row of all zeros, the original coefficient matrix is singular, and its rank is
only 2.

The consistency condition follows from this last row in the reduced echelon form, which
requires

% a+ % b—c=0.

If this is not satisfied, the system has no solutions; otherwise, it has infinitely many. The
free variable is z, since there is no pivot in the third column. The general solution is

y=a—4z, x:%b—}—%y—%z:%a—k%b—%,

where z is arbitrary.
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Geometrically, Theorem 1.45 is telling us about the possible configurations of linear
subsets (lines, planes, etc.) of an n-dimensional space. For example, a single linear equation
ax + by + cz = d, with (a,b,c) # 0, defines a plane P in three-dimensional space. The
solutions to a system of three linear equations in three unknowns belong to all three planes;
that is, they lie in their intersection P, N P, N P,. Generically, three planes intersect in
a single common point; this is case (i) of the theorem, which occurs if and only if the
coefficient matrix is nonsingular. The case of infinitely many solutions occurs when the
three planes intersect in a common line, or, even more degenerately, when they all coincide.
On the other hand, parallel planes, or planes intersecting in parallel lines, have no common
point of intersection, and this occurs when the system is incompatible and has no solutions.
There are no other possibilities: the total number of points in the intersection is either 0,
1, or co. Some sample geometric configurations appear in Figure 1.1.

Exercises
1.8.1. Which of the following systems has (¢) a unique solution? (i) infinitely many
oy =1,
solutions? (éit) no solution? In each case, find all solutions: (a) oy
3x+2y =—-3.
—2z=-3 -2 =6
20 +y+32=1, Ty - 22 ’ o2y +z=0
(b) (c) 2c—y+32z=T, (d) 204+y—32z=-3,
r+4y—2z=-3.
r—2y+5z=1. z—3y+ 3z =10.
3z —2 =4 2 172 — 5w =50
T—2y+2z—w=23, TolytE=4 ety liz=ow ’
3z 4y 624 1lw=16 f r+3y—4z=-3, 9z — 16y + 10z — 8w = 24,
() 3w ty+6z+llw=16, (f) ) 5 5, _7 (8 22 — 5y —4dz= 13,
20 —y+4z+w=09.
z—8y+9z=10. 6r — 12y + 2z —4w = —1.

1.8.2. Determine if the following systems are compatible and, if so, find the general solution:

Gay + 3, = 12 8, + 121, = 16 T t2my =1 23, — 6xy + dzg =2
xr Ty = s x To = s ra —0x Tq = 2,
2 4or 120 9 6o, 10z, =13, (O 2 A5T =2 () F o) BT
1 2 =9 1 2 = 19 32, +6xy = 3. 1 2 3= L
T 2x 3x 4z, =1,
2z +2x9 + 3153 =1, Ty +Tg + x5+ 91,4 =38, L 2Ty STy ATy
2z +4x9 + 623 + 51, =0,
(e) Tat2z3=3, (f) pt2z3+82,=7 (g)
3z +4xg + 25+ 74 =0,
4x + 529 + Txg = 15. —3xy +x3 —Txy =9.

dr; +629 +425 — 24 = 0.

1.8.3. Graph the following planes and determine whether they have a common intersection:

r+y+z=1, r+y=1, r+z=1.
a 0 b | 2
1.84. Let A=|a 2 a b | be the augmented matrix for a linear system. For which
b 2 a | a

values of a and b does the system have (i) a unique solution? (4) infinitely many
solutions? (#4) no solution?
1.8.5. Determine the general (complex) solution to the following systems:
T +2iy+(2—4i)z =5+ 51,
(b) (-1+1i)zx+2y+(4+4+2i)z=0,
(1—i)z+(1+4i)y—5iz=10+5i.

20+ (14 i)y — 2iz = 21,

@ ety —2iz=o0.
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)+ izy + x5 =1+41i, 2+ i)z+iy+(2+2i)z+ (1+121)w =0,
(¢) —z;+ay — ixg = —1, (d) l-i)z+y+(2-1)z+B8+2i)w=0,
ir) —xg —x5=—1-2i. B+2i)z+iy+ (3+3i)z+19iw = 0.

1.8.6. For which values of b and c does the system x| + 25 +bxg =1, bx; + 31y — 25 = —2,
3z, +4xy + 3 = ¢, have (a) no solution? (b) exactly one solution? (c) infinitely many

solutions?
. . . 1 1 2 1 3
1.8.7. Determine the rank of the following matrices: (a) (1 _2), (b) (_2 1 _3),
1 -1 1 2 -1 0 3
@ 1 -1 2|, @2 -1 1], @] o], )0 -1 2 5),
(—1 1 0) (1 1 —1) (—2)
1 -1 2 1
03 2 1 -1 0 00 03 1
@ | 1 S w1t 2 =3 1, @12 31 2|
s 4 -1 3 2 2 4 -2 1 -2
0 3 =5 =2

1.8.8. Write out a PA = LU factorization for each of the matrices in Exercise 1.8.7.

1.8.9. Construct a system of three linear equations in three unknowns that has
(a) one and only one solution; (b) more than one solution; (¢) no solution.

1.8.10. Find a coefficient matrix A such that the associated linear system Ax = b has
(a) infinitely many solutions for every b; (b) 0 or oo solutions, depending on b;
(¢) 0 or 1 solution depending on b; (d) exactly 1 solution for all b.

1.8.11. Give an example of a nonlinear system of two equations in two unknowns that has
(a) no solution; (b) exactly two solutions; (c) exactly three solutions; (d) infinitely
many solutions.

1.8.12. What does it mean if a linear system has a coefficient matrix with a column of all 0’s?
1.8.13. True or false: One can find an m x n matrix of rank r for every 0 < r < min {m,n}.

1.8.14. True or false: Every m x n matrix has (a) exactly m pivots; (b) at least one pivot.

1.8.15.(a) Prove that the product A = v wl of a nonzero m x 1 column vector v and a nonzero
1 x n row vector w' is an m x n matrix of rank r = 1. (b) Compute the following rank one

4

products: (4) (é) (-1 2), (i) ( o) (=2 1), (i) (_g) (13 —1).
-2

(c) Prove that every rank one matrix can be written in the form A = vw? .

1.8.16.(a) Let A be an m x n matrix and let M = (A | b) be the augmented matrix for the
linear system Ax = b. Show that either (i) rank A = rank M, or (i) rank A = rank M — 1.
(b) Prove that the system is compatible if and only if case (i) holds.

a ar cooar™t
ar™ ar™tt ..oar?nt
1.8.17. Find the rank of the matrix : : . . when a,r # 0.
ar(=Dn  gp=Dn+l Pl
1 2 3 .oon
n+1 n+2 n+3 ... 2n

1.8.18. Find the rank of the n x n matrix 2n+1 2n+2 2n+3 ... 3n

2 —n+2 n2

n“—n-+1 n?
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1.8.19. Find two matrices A, B such that rank A B # rank B A.

{ 1.8.20. Let A be an m x n matrix of rank r. (a) Suppose C = (A B) is an m x k matrix, k > n,
whose first n columns are the same as the columns of A. Prove that rank C' > rank A. Give

an example with rank C' = rank A; with rank C' > rank A. (b) Let F = <é> beajxmn

matrix, j > m, whose first m rows are the same as those of A. Prove that rank E > rank A.
Give an example with rank ' = rank A; with rank F > rank A.

& 1.8.21. Let A be a singular square matrix. Prove that there exist elementary matrices E,,..., Ey
such that A = F| E, --- Ey Z, where Z is a matrix with at least one all-zero row.

Homogeneous Systems

A linear system with all 0’s on the right-hand side is called homogeneous. Conversely, if
at least one of the right-hand sides is nonzero, the system is called inhomogeneous.

In matrix notation, a homogeneous system takes the form
Ax =0, (1.80)

where the zero vector 0 indicates that every entry on the right-hand side is zero. Homo-
geneous systems are always compatible, since x = 0 is a solution, known as the trivial
solution. If a homogeneous system has a nontrivial solution x # 0, then Theorem 1.45
assures us that it must have infinitely many solutions. This will occur if and only if the
reduced system has one or more free variables.

Theorem 1.47. A homogeneous linear system Ax = 0 of m equations in n unknowns
has a nontrivial solution x # 0 if and only if the rank of A is r < n. If m < n, the system
always has a nontrivial solution. If m = n, the system has a nontrivial solution if and only
if A is singular.

Thus, homogeneous systems with fewer equations than unknowns always have infinitely
many solutions. Indeed, the coefficient matrix of such a system has more columns than
rows, and so at least one column cannot contain a pivot, meaning that there is at least one
free variable in the general solution formula.

Example 1.48. Consider the homogeneous linear system

2z, + 29+ 52, =0,
4z, +2x9 — 25 +8x, =0,
—2x — 29+ 325 — 43, =0,
with coefficient matrix
2 1 0 5
A= 4 2 -1 8
-2 -1 3 —4
Since there are only three equations in four unknowns, we already know that the system
has infinitely many solutions, including the trivial solution z; = 4 = 24 = z, = 0.
When solving a homogeneous system, the final column of the augmented matrix consists

of all zeros. As such, it will never be altered by row operations, and so it is a waste of
effort to carry it along during the process. We therefore perform the Gaussian Elimination
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algorithm directly on the coefficient matrix A. Working with the (1,1) entry as the first
pivot, we first obtain

2 1 0 )
00 -1 =2
0 0 3 1

The (2,3) entry is the second pivot, and we apply one final row operation to place the
matrix in row echelon form

2 1 0 9
00 -1 =2
00 0 =5

This corresponds to the reduced homogeneous system
2x) + x5+ 52y =0, —x3—2x, =0, -5z, =0.

Since there are three pivots in the final row echelon form, the rank of the coefficient matrix
A is 3. There is one free variable, namely x,. Using Back Substitution, we easily obtain

the general solution
xlz—%a Ty =1, Ty =x, =0,

which depends upon a single free parameter ¢ = x,,.

Example 1.49. Consider the homogeneous linear system

20 —y+32=0,

2 -1 3
—4r+2y—62=0, _ _
Y with coefficient matrix A= 4 2 6
20 —y+ 2 =0, 2 -1 1
62 —3y+32=0, 6 -3 3

The system admits the trivial solution z = y = z = 0, but in this case we need to complete
the elimination algorithm before we know for sure whether there are other solutions. After

2 -1 3
the first stage in the reduction process, the coefficient matrix becomes 0 8 _g
0 0 —6

To continue, we need to interchange the second and third rows to place a nonzero entry in
2 -1 3
. . . 0 0 -2
the final pivot position; after that, the reduction to the row echelon form 0 0 0
0 0 O

is immediate. Thus, the system reduces to the equations

2x —y+32=0, —22=0, 0=0, 0=0.

The third and fourth equations are trivially compatible, as they must be in the homo-
geneous case. The rank of the coefficient matrix is equal to two, which is less than the
number of columns, and so, even though the system has more equations than unknowns,
it has infinitely many solutions. These can be written in terms of the free variable y; the
general solution is x = %y, z = 0, where y is arbitrary.
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Exercises
1.8.22. Solve the following homogeneous linear systems.
iE—i—y—Zz:O7 Tty —=z ) r+y z R
-z -32=0.
! r—3y+32=0. r+3y+3z=0.
— :0’
9 9 0 —z+3y—2z+w =0, 5 y—;—z 0
_ _ 3 —
(d)l’-i- Y Z 4w " (e) 2245y +z—2w=0, (f) )

—3x+2z—-2w=0. z+y—2w=0,

3z —8 — 4w =0.
* vtz v y—3z+w=0.

1.8.23. Find all solutions to the homogeneous system A x = 0 for the coefficient matrix

(4 o) el i) (i)

7 8 9
oron (A E (e
(e) _% g g ) (f) 2 1 (g) 4 7 20 (h) 2 —2 1 5
1 0 -1 1 6 —1 1 1 —4

1.8.24. Let U be an upper triangular matrix. Show that the homogeneous system Ux = 0
admits a nontrivial solution if and only if U has at least one 0 on its diagonal.

1.8.25. Find the solution to the homogeneous system 2z, + o —2x5 =0, 22, — x5 — 2253 = 0.
Then solve the inhomogeneous version where the right-hand sides are changed to a, b,
respectively. What do you observe?

1.8.26. Answer Exercise 1.8.25 for the system 22, + x4+ 25—, =0, 22y — 225 — 25+ 32, = 0.
1.8.27. Find all values of k for which the following homogeneous systems of linear equations
have a non-trivial solution: k 2y =
2, + ko +day = 0, r+ky+22=0,
(a) z+ky =0, 3x—ky—22z=0,
a

b) kxy+x5+2x,=0,
kx+4y =0, (b) L2 3 (©) (k+1)z—2y—42=0,
2z +kxy +8x3 =0.
kx+4+3y+62z=0.

1.9 Determinants

You may be surprised that, so far, we have not mentioned determinants — a topic that
typically assumes a central role in many treatments of basic linear algebra. Determinants
can be useful in low-dimensional and highly structured problems, and have many fascinat-
ing properties. They also prominently feature in theoretical developments of the subject.
But, like matrix inverses, they are almost completely irrelevant when it comes to large
scale applications and practical computations. Indeed, for most matrices, the best way to
compute a determinant is (surprise) Gaussian Elimination! Consequently, from a computa-
tional standpoint, the determinant adds no new information concerning the linear system
and its solutions. However, for completeness and in preparation for certain later develop-
ments (particularly computing eigenvalues of small matrices), you should be familiar with
the basic facts and properties of determinants, as summarized in this final section.
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The determinant of a square matrix! A is a scalar, written det A, that will distinguish
between singular and nonsingular matrices. We already encountered in (1.38) the determi-
a b

d
nonzero if and only if the matrix has an inverse, or, equivalently, is nonsingular. Our goal
is to find an analogous quantity for general square matrices.

nant of a 2 x 2 matrix?: det ) = ad — bc. The key fact is that the determinant is

There are many different ways to define determinants. The difficulty is that the ac-
tual formula is very unwieldy — see (1.87) below — and not well motivated. We prefer
an axiomatic approach that explains how our three elementary row operations affect the
determinant.

Theorem 1.50. Associated with every square matrix, there exists a uniquely defined
scalar quantity, known as its determinant, that obeys the following axioms:
(i) Adding a multiple of one row to another does not change the determinant.
(i) Interchanging two rows changes the sign of the determinant.
(4ii) Multiplying a row by any scalar (including zero) multiplies the determinant by the
same scalar.
(iv) The determinant of an upper triangular matrix U is equal to the product of its

diagonal entries: det U = uqqugy -+ U,

In particular, axiom (iv) implies that the determinant of the identity matrix is
det T =1. (1.81)

Checking that all four of these axioms hold in the 2 x 2 case is an elementary exercise.

The proof of Theorem 1.50 is based on the following results. Suppose, in particular, we
multiply a row of the matrix A by the zero scalar. The resulting matrix has a row of all
zeros, and, by axiom (iii), has zero determinant. Since any matrix with a zero row can be
obtained in this fashion, we conclude:

Lemma 1.51. Any matrix with one or more all-zero rows has zero determinant.

Using these properties, one is able to compute the determinant of any square matrix
by Gaussian Elimination, which is, in fact, the fastest and most practical computational
method in all but the simplest situations.

Theorem 1.52. If A = LU is a regular matrix, then
det A =detU = uy gy -+ u (1.82)

nn
equals the product of the pivots. More generally, if A is nonsingular, and requires k row

interchanges to arrive at its permuted factorization PA = LU, then

det A=det P detU = (—1)F uj ugy -+ u,,,. (1.83)

nn

Finally, A is singular if and only if
det A = 0. (1.84)

f Non-square matrices do not have determinants.

¥ Some authors use vertical lines to indicate the determinant:

a b a b
B d‘_det(c d)'
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Proof: In the regular case, we need only elementary row operations of type #1 to reduce
A to upper triangular form U, and axiom (i) says these do not change the determinant.
Therefore, det A = detU, the formula for the latter being given by axiom (iv). The
nonsingular case follows in a similar fashion. By axiom (ii), each row interchange changes
the sign of the determinant, and so det A equals det U if there has been an even number of
interchanges, but equals — det U if there has been an odd number. For the same reason,
the determinant of the permutation matrix P equals +1 if there has been an even number
of row interchanges, and —1 for an odd number. Finally, if A is singular, then we can
reduce it to a matrix with at least one row of zeros by elementary row operations of types
#1 and #2. Lemma 1.51 implies that the resulting matrix has zero determinant, and so
det A = 0, also. Q.E.D.

Remark. If we then apply Gauss—Jordan elimination to reduce the upper triangular
matrix U to the identity matrix I, and use axiom (ii) when each row is divided by its
pivot, we find that axiom (iv) follows from the simpler formula (1.81), which could thus
replace it in Theorem 1.50.

Example 1.53. Let us compute the determinant of the 4 x 4 matrix

1 0 -1 2
2 1 =3 4
A= 0 2 =2 3
11 -4 -2

We perform our usual Gaussian Elimination algorithm, successively leading to the matrices

1 0 -1 2 1 0 -1 2 1 0 -1 2

A s 01 -1 0 . 01 -1 0 . 01 -1 0
0 2 -2 3 0 0 0 3 00 -2 -4/
01 -3 -4 0 0 -2 -4 0 0 0 3

where we used a single row interchange to obtain the final upper triangular form. Owing
to the row interchange, the determinant of the original matrix is —1 times the product of
the pivots:

det A=—1-(1-1-(=2)-3)=6.

In particular, this tells us that A is nonsingular. But, of course, this was already evident,
since we successfully reduced the matrix to upper triangular form with 4 nonzero pivots.

There is a variety of other approaches to evaluating determinants. However, except
for very small (2 x 2 or 3 x 3) matrices or other special situations, the most efficient
algorithm for computing the determinant of a matrix is to apply Gaussian Elimination,
with pivoting if necessary, and then invoke the relevant formula from Theorem 1.52. In
particular, the determinantal criterion (1.84) for singular matrices, while of theoretical
interest, is unnecessary in practice, since we will have already detected whether the matrix
is singular during the course of the elimination procedure by observing that it has fewer
than the full number of pivots.

Let us finish by stating a few of the basic properties of determinants. Proofs are outlined
in the exercises.
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Proposition 1.54. The determinant of the product of two square matrices of the same
size is the product of their determinants:

det(AB) =det A det B. (1.85)

Therefore, even though matrix multiplication is not commutative, and so AB # B A in
general, both matrix products have the same determinant:

det(AB) =det A det B=det B det A = det(BA),

because ordinary (scalar) multiplication is commutative. In particular, setting B = A~!
and using axiom (i), we find that the determinant of the inverse matrix is the reciprocal
of the matrix’s determinant.

Proposition 1.55. If A is a nonsingular matrix, then

1
det A=l = — 1.
¢ det A (Lgs)

Finally, for later reference, we end with the general formula for the determinant of an
n x n matrix A with entries a,;:

det A = Z (SIgNT) Gr(1y1 Qr(2)2 " Qr(n)on- (1.87)

The sum is over all possible permutations 7 of the rows of A. The sign of the permutation,
written signm, equals the determinant of the corresponding permutation matrix P, so
sign m = det P = +1 if the permutation is composed of an even number of row interchanges
and —1 if composed of an odd number. For example, the six terms in the well-known
formula
det Z;i Z;z Z;i _ G110a2033 131 Q13093 + U910 35093 — (1.88)
Gor Goe G T Q11 32093 T Qg1 A1 033 — Q31 G013
31 @32 0433
for a 3 x 3 determinant correspond to the six possible permutations (1.31) of a 3-rowed
matrix. A proof that the formula (1.87) satisfies the defining properties of the determinant
listed in Theorem 1.50 is tedious, but not hard. The reader might wish to try out the 3 x 3
case to be convinced that it works.
The explicit formula (1.87) proves that the determinant function is well-defined, and
formally completes the proof of Theorem 1.50. One consequence of this formula is that the
determinant is unaffected by the transpose operation.

Proposition 1.56. Transposing a matrix does not change its determinant:

det AT = det A. (1.89)

Remark. Proposition 1.56 has the interesting consequence that one can equally well
use “elementary column operations” to compute determinants. We will not develop this
approach in any detail here, since it does not help us to solve linear equations.

However, the explicit determinant formula (1.87) is not used in practice. Since there are
n! different permutations of the n rows, the determinantal sum (1.87) contains n! distinct
terms, which, as soon as n is of moderate size, renders it completely useless for practical
computations. For instance, the determinant of a 10 x 10 matrix contains 10! = 3,628,800
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terms, while a 100 x 100 determinant would require summing 9.3326 x 10'®7 terms, each of
which is a product of 100 matrix entries! The most efficient way to compute determinants
is still our mainstay — Gaussian Elimination, coupled with the fact that the determinant
is & the product of the pivots! On this note, we conclude our brief introduction.

Exercises

1.9.1. Use Gaussian Elimination to find the determinant of the following matrices:

()(2‘1) (b)((l) é_g)()(%g g) (d)(gi_il%)
-4 3) 2 -3 o) 38 10/ 2 7 -8)
1
2
3

5 —1 0 2 -2 1 4 1 -2 14 -5
0 3 -1 5 -4 0 0 b =23 -3
(e) , (f) , (&) |2 -1 -1 2 2
0 0 —4 2 -4 2 5 5 -1 05 &
0O 0 0 3 0 2 -4 -9 5 9 0 4 -1

1.9.2. Verify the determinant product formula (1.85) when

1 -1 3 0 1 -1
A=|2 -1 1], B=|1 -3 —2].
4 -2 0 2 0 1

1.9.3.(a) Give an example of a non-diagonal 2 x 2 matrix for which A2 = 1. (b) In general, if
A% = 1, show that det A = +1. (c) It A% = A, what can you say about det A?

1.9.4. True or false: If true, explain why. If false, give an explicit counterexample.
(a) If det A # 0 then A1 exists. (b) det(2A) = 2 det A. (c) det(A + B) = det A + det B.

(d) det AT = ﬁ. (e) det(AB~) = jjtg. (f) det[(A + B)(A— B)] = det(A2 — B?).

)
(g) If Ais an n X n matrix with det A = 0, then rank A < n.
(h) If det A=1and AB = O, then B =0.

1.9.5. Prove that the similar matrices B = S™! A S have the same determinant: det A = det B.
1.9.6. Prove that if A is a n X n matrix and ¢ is a scalar, then det(c A) = ¢" det A.

1.9.7. Prove that the determinant of a lower triangular matrix is the product of its diagonal

entries.
1.9.8.(a) Show that if A has size n x n, then det(—A) = (—1)" det A. (b) Prove that, for
n odd, any n X n skew-symmetric matrix A = —AT s singular. (¢) Find a nonsingular

skew-symmetric matrix.

& 1.9.9. Prove directly that the 2 x 2 determinant formula (1.38) satisfies the four determinant
axioms listed in Theorem 1.50.

¢ 1.9.10. In this exercise, we prove the determinantal product formula (1.85). (a) Prove that
if F is any elementary matrix (of the appropriate size), then det(E B) = det E det B.
(b) Use induction to prove that if A = E| E, --- E is a product of elementary matrices,
then det(AB) = det A det B. Explain why this proves the product formula whenever A is
a nonsingular matrix. (¢) Prove that if Z is a matrix with a zero row, then Z B also has a
zero row, and so det(Z B) = 0 =det Z det B. (d) Use Exercise 1.8.21 to complete the proof
of the product formula.

1.9.11. Prove (1.86).

& 1.9.12. Prove (1.89). Hint: Use Exercise 1.6.30 in the regular case. Then extend to the
nonsingular case. Finally, explain why the result also holds for singular matrices.
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1.9.13. Write out the formula for a 4 x 4 determinant. It should contain 24 = 4! terms.

& 1.9.14. Show that (1.87) satisfies all four determinant axioms, and hence is the correct formula
for a determinant.

{ 1.9.15. Prove that axiom (iv) in Theorem 1.50 can be proved as a consequence of the first
three axioms and the property det I = 1.

{ 1.9.16. Prove that one cannot produce an elementary row operation of type #2 by a
combination of elementary row operations of type #1.

A
© 1.9.17. Show that (a) if A= (Z Z) is regular, then its pivots are a and de; ;
a b e
- A
(b) if A= | ¢ d f | isregular, then its pivots are a, M, and dL.
g h a ad—be

(¢) Can you generalize this observation to regular n x n matrices?

© 1.9.18. In this exercise, we justify the use of “elementary column operations” to compute
determinants. Prove that (a) adding a scalar multiple of one column to another does not
change the determinant; (b) multiplying a column by a scalar multiplies the determinant
by the same scalar; (¢) interchanging two columns changes the sign of the determinant.
(d) Explain how to use elementary column operations to reduce a matrix to lower
triangular form and thereby compute its determinant.

$ 1.9.19. Find the determinant of the Vandermonde matrices listed in Exercise 1.3.24. Can you
guess the general n x n formula?

© 1.9.20. Cramer’s Rule. (a) Show that the nonsingular system ax + by = p, cx + dy = ¢ has
the solution given by the determinantal ratios
1 p b 1 a p B a b
:L'—Kdet<q d>’ y—Kdet(c q), where A-det(c d)' (1.90)
z+3y=13, . z=—2y=4,

(i)

(b) Use Cramer’s Rule (1.90) to solve the systems (%) i
4x 42y =0, 3rx+6y=—2.

ar+by+cz=np, a b ¢
(¢) Prove that the solution to dz+ey+ fz =g, with A =det (d e f) #01is
gr+hy+jz=m, g h

1 p b ¢ 1 a p c 1 a b p
r=—det| q e f], y=-—det|d q [, z=—det|d e q]|. (1.91)
A rohoj A . A

g r j g h r
44y =3, 3x+2y—2z=1,
(d) Use Cramer’s Rule (1.91) to solve (i) 4z +2y+2z=2, (i) v—3y+2z=2,
—x+y—2z2=0, 20 —y+2z=3.

(e) Can you see the pattern that will generalize to n equations in n unknowns?
Remark. Although elegant, Cramer’s rule is not a very practical solution method.

& 1.9.21.(a) Show that if D = (é g) is a block diagonal matrix, where A and B are square

matrices, then det D = det A det B. (b) Prove that the same holds for a block upper
triangular matrix det (é g) =det A det B. (c) Use this method to compute the

determinant of the following matrices:

s 9 o 12 -2 5 120 4 5 -1 0 0
. =31 0 5| o314 1] . (2 50 o0
(i) (83_‘;’)’(“) 00 1 3@ g3 1 g3 44

00 2 -2 000 -3 3 2 9 -5
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Chapter 2

Vector Spaces and Bases

Vector spaces and their ancillary structures provide the common language of linear algebra,
and, as such, are an essential prerequisite for understanding contemporary applied (and
pure) mathematics. The key concepts of vector space, subspace, linear independence, span,
and basis will appear, not only in linear systems of algebraic equations and the geometry
of n-dimensional Euclidean space, but also in the analysis of linear differential equations,
linear boundary value problems, Fourier analysis, signal processing, numerical methods,
and many, many other fields. Therefore, in order to master modern linear algebra and its
applications, the first order of business is to acquire a firm understanding of fundamental
vector space constructions.

One of the grand themes of mathematics is the recognition that many seemingly unre-
lated entities are, in fact, different manifestations of the same underlying abstract structure.
This serves to unify and simplify the disparate special situations, at the expense of intro-
ducing an extra level of abstraction. Indeed, the history of mathematics, as well as your
entire mathematical educational career, can be viewed as an evolution towards ever greater
abstraction resulting in ever greater power for solving problems. Here, the abstract no-
tion of a vector space serves to unify spaces of ordinary vectors, spaces of functions, such
as polynomials, exponentials, and trigonometric functions, as well as spaces of matrices,
spaces of linear operators, and so on, all in a common conceptual framework. Moreover,
proofs that might appear to be complicated in a particular context often turn out to be
relatively transparent when recast in the more inclusive vector space language. The price
that one pays for the increased level of abstraction is that, while the underlying math-
ematics is not all that complicated, novices typically take a long time to assimilate the
underlying concepts. In our opinion, the best way to approach the subject is to think in
terms of concrete examples. First, make sure you understand what is being said in the case
of ordinary Euclidean space. Once this is grasped, the next important case to consider is
an elementary function space, e.g., the space of continuous scalar functions. With the two
most important cases firmly in hand, the leap to the general abstract formulation should
not be too painful. Patience is essential; ultimately, the only way to truly understand an
abstract concept like a vector space is by working with it in real-life applications! And
always keep in mind that the effort expended here will be amply rewarded later on.

Following an introduction to vector spaces and subspaces, we develop the fundamental
notions of span and linear independence, first in the context of ordinary vectors, but then
in more generality, with an emphasis on function spaces. These are then combined into
the all-important definition of a basis of a vector space, leading to a linear algebraic char-
acterization of its dimension. Here is where the distinction between finite-dimensional and
infinite-dimensional vector spaces first becomes apparent, although the full ramifications
of this dichotomy will take time to unfold. We will then study the four fundamental sub-
spaces associated with a matrix — its image, kernel, coimage, and cokernel — and explain
how they help us understand the structure and the solutions of linear algebraic systems.
Of particular significance is the linear superposition principle that enables us to combine
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solutions to linear systems. Superposition is the hallmark of linearity, and will apply not
only to linear algebraic equations, but also to linear ordinary differential equations, linear
boundary value problems, linear partial differential equations, linear integral equations,
linear control systems, etc. The final section in this chapter develops some interesting ap-
plications in graph theory that serve to illustrate the fundamental matrix subspaces; these
results will be developed further in our study of electrical circuits.

2.1 Real Vector Spaces

A vector space is the abstract reformulation of the quintessential properties of n-dimen-
sional” Fuclidean space R™, which is defined as the set of all real (column) vectors with
n entries. The basic laws of vector addition and scalar multiplication in R"™ serve as the
template for the following general definition.

Definition 2.1. A wvector space is a set V' equipped with two operations:
(i) Addition: adding any pair of vectors v,w € V produces another vector v+ w € V;
(#i) Scalar Multiplication: multiplying a vector v € V by a scalar ¢ € R produces a
vector cv € V.
These are subject to the following axioms, valid for all u,v,w € V and all scalars ¢,d € R:
(a) Commutativity of Addition: v+w =w + V.
(b) Associativity of Addition: u+ (v+w) = (u+v)+ w.
(¢) Additive Identity: There is a zero element 0 € V satisfying v+0=v =0+ v.
(d) Additive Inverse: For each v € V there is an element —v € V such that
v+ (=v)=0=(—v)+v.
(e) Distributivity: (c+d)v = (cv)+ (dv), and ¢(v+w) = (¢v) + (cw).
(f) Associativity of Scalar Multiplication: c(dv) = (cd)v.
(g) Unit for Scalar Multiplication: the scalar 1 € R satisfies 1v = v.

=5

Remark. For most of this text, we will deal with real vector spaces, in which the scalars
are ordinary real numbers, as indicated in the definition. Complex vector spaces, where
complex scalars are allowed, will be introduced in Section 3.6. Vector spaces over other
fields are studied in abstract algebra, [38].

In the beginning, we will refer to the individual elements of a vector space as “vectors”,
even though, as we shall see, they might also be functions, or matrices, or even more general
objects. Unless we are dealing with certain specific examples such as a space of functions
or matrices, we will use bold face, lower case Latin letters v, w,... to denote the elements
of our vector space. We will usually use a bold face 0 to denote the unique* zero element
of our vector space, while ordinary 0 denotes the real number zero.

The following identities are elementary consequences of the vector space axioms:

(h) Ov=0;

(1) (=Dv=-v;

(j) c0=0;

(k) If ¢v =0, theneither ¢=0 or v=0.

T The precise definition of dimension will appear later, in Theorem 2.29.

¥ See Exercise 2.1.12.
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v vV+w

cvV

v
Vector Addition Scalar Multiplication

Figure 2.1.  Vector Space Operations in R”.

Let us, for example, prove (h). Let z = 0v. Then, by the distributive property,
z+z=0v+0v=(0+0)v=0v =z
Adding —z to both sides of this equation, and making use of axioms (b), (d), and then
(c), we conclude that
z=z+0=z+(z+(—2)=(z+2)+(—2z)=z+(—2) =0,

which completes the proof. Verification of the other three properties is left as an exercise
for the reader.
Let us now introduce the most important examples of (real) vector spaces.

Example 2.2. As noted above, the prototypical example of a real vector space is the
Euclidean space R™, consisting of all n-tuples of real numbers v = (v,v,,...,0, )T, which
we consistently write as column vectors. Vector addition and scalar multiplication are
defined in the usual manner:

vy +wy CUy vy Wy
Vg + Woy CUy Uy Woy
vV+w= . , CV = . ., whenever v = |, w= .|, ceR.
v, =+ w, cv, v, w,,
. T . . .
The zero vector is 0 = (0,...,0)". The two vector space operations are illustrated in

Figure 2.1. The fact that vectors in R™ satisfy all of the vector space axioms is an immediate
consequence of the laws of vector addition and scalar multiplication.

Example 2.3. Let M
M., forms a vector space under the laws of matrix addition and scalar multiplication.
The zero element is the zero matrix O. (We are ignoring matrix multiplication, which is not
a vector space operation.) Again, the vector space axioms are immediate consequences of
the basic laws of matrix arithmetic. The preceding example of the vector space R™ = M,
is a particular case in which the matrices have only one column.

mxn denote the space of all real matrices of size m x n. Then

Example 2.4. Consider the space

P(n) _ { p(l‘) _ anmn_i_an_lmn*l + .. —|—all'+a0 } (21)
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VAN
viivAvaRNRVIIVAY

Scalar Multiplication:

f(@) =1cosldx 2f(z) = 2cosldw

A

VARV,

Addition:
g(z) = a? f(x) + g(x) = § cosldx + z?

Figure 2.2.  Vector Space Operations in Function Space.

consisting of all real polynomials of degree < n. Addition of polynomials is defined in the
usual manner; for example,

(22 = 3x) + (22° —5x+4) =327 — 8z + 4.

Note that the sum p(x) + ¢(z) of two polynomials of degree < n also has degree < n. The
zero element of P(™) is the zero polynomial. We can multiply polynomials by scalars — real
constants — in the usual fashion; for example if p(z) = 22 — 2, then 3p(z) = 322 — 6.
The proof that P satisfies the vector space axioms is an easy consequence of the basic
laws of polynomial algebra.

Warning. It is not true that the sum of two polynomials of degree n also has degree n.
For example (22 + 1) + (=22 + 2) = x + 1 has degree 1 even though the two summands
have degree 2. This means that the set of polynomials of degree = n is not a vector space.

Warning. You might be tempted to identify a scalar with a constant polynomial, but one
should really regard these as two completely different objects — one is a number, while the
other is a constant function. To add to the confusion, one typically uses the same notation
for these two objects; for instance, 0 could mean either the real number 0 or the constant
function taking the value 0 everywhere, which is the zero element, 0, of this vector space.
The reader needs to exercise due care when interpreting each occurrence.

For much of analysis, including differential equations, Fourier theory, numerical meth-

ods, etc., the most important vector spaces consist of functions that have certain prescribed
properties. The simplest such example is the following.
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Example 2.5. Let I C R be an intervalf. Consider the function space F = F(I) whose

elements are all real-valued functions f(x) defined for all « € I. The claim is that the
function space F has the structure of a vector space. Addition of functions in F is defined
in the usual manner: (f+g)(z) = f(z)+g(x) for all x € I. Multiplication by scalars ¢ € R
is the same as multiplication by constants, (¢ f)(x) = ¢ f(x). The zero element is the zero
function — the constant function that is identically O for all x € I. The proof of the vector
space axioms is straightforward. Observe that we are ignoring all additional operations
that affect functions such as multiplication, division, inversion, composition, etc.; these are
irrelevant as far as the vector space structure of F goes.

Example 2.6. The preceding examples are all, in fact, special cases of an even more

general construction. A clue is to note that the last example of a function space does not
make any use of the fact that the domain of the functions is a real interval. Indeed, the
same construction produces a function space F(I) corresponding to any subset I C R.

Even more generally, let S be any set. Let F = F(S) denote the space of all real-valued
functions f:S — R. Then we claim that V is a vector space under the operations of
function addition and scalar multiplication. More precisely, given functions f and g, we
define their sum to be the function h = f + ¢ such that h(z) = f(z) + g(x) for all z € S.
Similarly, given a function f and a real scalar ¢ € R, we define the scalar multiple g = ¢ f
to be the function such that g(z) = ¢ f(x) for all z € S. The proof of the vector space
axioms is straightforward, and the reader should be able to fill in the necessary details.

In particular, if S C R is an interval, then F(S) coincides with the space of scalar
functions described in the preceding example. If S C R™ is a subset of Euclidean space,
then the elements of F(S) are real-valued functions f(z,,...,z,) depending upon the n
variables corresponding to the coordinates of points x = (z,...,z,) € S in the domain.
In this fashion, the set of real-valued functions defined on any domain in R™ forms a vector
space.

Another useful example is to let S = {x,,...,2,,} C R be a finite set of real numbers. A
real-valued function f: S — Ris defined by its values f(x,), f(xy), ..., f(z,,) at the specified
points. In applications, these objects serve to indicate the sample values of a scalar function
f(z) € F(R) taken at the sample points x,...,x,. For example, if f(x) = z? and the
sample points are x; = 0, x4 = 1, 23 = 2, z, = 3, then the corresponding sample
values are f(z,) =0, f(zy) =1, f(z3) =4, f(xy) =9. When measuring a physical
quantity — velocity, temperature, pressure, etc. — one typically records only a finite set
of sample values. The intermediate, non-recorded values between the sample points are
then reconstructed through some form of interpolation, a topic that we shall visit in depth
in Chapters 4 and 5.

Interestingly, the sample values f(z,) can be identified with the entries f; of a vector

£=(f1,fores f)T = (fm), f(23),. o, fl,))" € R,

T An interval is a subset I C R that contains all the real numbers between a,b € R, where a < b,
and can be

e closed, meaning that it includes its endpoints: I = [a,b] = {z]a <z <b};
e open, which does not include either endpoint: I = (a,b) ={x|a <z <b}; or
e half-open, which includes one but not the other endpoint, so I = [a,b) = {z|a <z < b}
or I =(a,b]={zla<z<b}.
An open endpoint is allowed to be infinite; in particular, (—o00,00) = R is another way of writing
the entire real line.
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Figure 2.3.  Sampled Function.

known as the sample vector. Every sampled function f:S — R corresponds to a unique
vector f € R™ and vice versa. (But keep in mind that different scalar functions f(x) € F(R)
may have the same sample values.) Addition of sample functions corresponds to addition
of their sample vectors, as does scalar multiplication. Thus, the vector space of sample
functions F(S) = F{x,,...,x,} is the same as the vector space R™! The identification
of sampled functions as vectors is of fundamental importance in modern signal processing
and data analysis, as we will see below.

Example 2.7. The above construction admits yet a further generalization. We continue

to let S be an arbitrary set. Let V be a vector space. The claim is that the space F (S, V)
consisting of all V-valued functions f: S — V is a vector space. In other words, we replace
the particular vector space R in the preceding example by a general vector space V, and
the same conclusion holds. The operations of function addition and scalar multiplication
are defined in the evident manner: (f+g)(z) = f(x)+g(x) and (cf)(x) = cf(z) for x € S,
where we are using the vector addition and scalar multiplication operations on V' to induce
corresponding operations on V-valued functions. The proof that F (.S, V') satisfies all of the
vector space axioms proceeds as before.

The most important example of such a function space arises when S C R™ is a do-
main in Euclidean space and V' = R™ is itself a Euclidean space. In this case, the
elements of F(S,R™) consist of vector-valued functions f: S — R™, so that f(x) =
(filzy,...ozy), oo fo (2, o y2y) )T is a column vector consisting of m functions of n
variables, all defined on a common domain S. The general construction implies that
addition and scalar multiplication of vector-valued functions is done componentwise; for

example
5 a? \  [cosz\ _ (22%—cosx
e’ —4 x S\ 2e"—2—-8)°

Of particular importance are the vector fields arising in physics, including gravitational
force fields, electromagnetic fields, fluid velocity fields, and many others.

Exercises

2.1.1. Show that the set of complex numbers x + iy forms a real vector space under the
operations of addition (z + iy) + (u+ iv) = (x +u) + i(y + v) and scalar multiplication
c¢(x+ iy) = cx + icy. (But complex multiplication is not a real vector space operation.)
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2.1.2. Show that the positive quadrant Q = { (z,y)|z,y > 0} C R? forms a vector space
if we define addition by (z,y;) + (29,¥5) = (2, z9,y; Yy) and scalar multiplication by
c(z,y) = (=% y°).

{ 2.1.3. Let S be any set. Carefully justify the validity of all the vector space axioms for the
space F(S) consisting of all real-valued functions f:S — R.

2.1.4. Let S = {0,1,2,3}. (a) Find the sample vectors corresponding to the functions 1,
cosmx, cos2mx, cos3mwx. (b) Is a function uniquely determined by its sample values?

2.1.5. Find two different functions f(z) and g(z) that have the same sample vectors f, g at the
sample points 1 =0, zy =1, z53=—1.

2.1.6.(a) Let z; = 0, x5 = 1. Find the unique linear function f(z) = ax + b that has the
sample vector £ = (3,—1)7. (b) Let z; =0, 9 =1, x5 =—1. Find the unique quadratic
function f(z) = az? + bx + ¢ with sample vector f = (1, —2,0)T.

2.1.7. Let F(R? R?) denote the vector space consisting of all functions f: R? — RZ.
(a) Which of the following functions f(z,y) are elements? (i) x2 + v, (i) (xx_yy ),

e’ 1 z Yy r
(4ir) (cosy)’ (iv) (3>, (v) (—y a:) , (vi) i i/r , . (b) Sum all of the elements
of F(R?,R?) you identified in part (a). Then multiply your sum by the scalar — 5.
(¢) Carefully describe the zero element of the vector space F(R? R?).
$ 2.1.8. A planar vector field is a function that assigns a vector v(z,y) = (Zl Ei’g;) to each
2 )
point (2) € R2. Explain why the set of all planar vector fields forms a vector space.
© 2.1.9. Let h,k > 0 be fixed. Let S = {(¢h,jk)|1 <i < m,1 <j <n}be
points in a rectangular planar grid. Show that the function space F(S) can . . . . . .

be identified with the vector space of m x n matrices M,,,,,. ~  °*~*°°**°°

2.1.10. The space R* is defined as the set of all infinite real sequences a = (ay,a9,4a3,...),

where a; € R. Define addition and scalar multiplication in such a way as to make R* into
a vector space. Explain why all the vector space axioms are valid.

2.1.11. Prove the basic vector space properties (i), (j), (k) following Definition 2.1.
{ 2.1.12. Prove that a vector space has only one zero element 0.

$ 2.1.13. Suppose that V and W are vector spaces. The Cartesian product space, denoted by
V x W, is defined as the set of all ordered pairs (v, w), where v € V,w € W, with vector
addition (v,w) + (V,w) = (v + ¥v,w + W) and scalar multiplication ¢(v,w) = (cv,cw).
(a) Prove that V x W is a vector space. (b) Explain why R x R is the same as R
(c) More generally, explain why R™ x R™ is the same as R™™,

2.1.14. Use Exercise 2.1.13 to show that the space of pairs (f(z),a), where f is a continuous
scalar function and a is a real number, is a vector space. What is the zero element? Be
precise! Write out the laws of vector addition and scalar multiplication.

2.2 Subspaces

In the preceding section, we were introduced to the most basic vector spaces that arise in
this text. Almost all of the vector spaces used in applications appear as subsets of these
prototypical examples.
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Definition 2.8. A subspace of a vector space V is a subset W C V that is a vector space
in its own right — under the same operations of vector addition and scalar multiplication
and the same zero element.

In particular, a subspace W must contain the zero element of V. Proving that a given
subset of a vector space is a subspace is particularly easy: we need only check its closure
under addition and scalar multiplication.

Proposition 2.9. A nonempty subset W C V of a vector space is a subspace if and only if
(a) for every v,w € W, the sum v +w € W, and
(b) for every v € W and every ¢ € R, the scalar product cv € W.

Proof: The proof is immediate. For example, let us check commutativity. The subspace
elements v, w € W can be regarded as elements of V', in which case v+w = w+ v because
V' is a vector space. But the closure condition implies that the common sum also belongs
to W, and so the commutativity axiom also holds for elements of W. Establishing the
validity of the other axioms is equally easy. Q.E.D.

It is sometimes convenient to combine the two closure conditions. Thus, to prove that
W C V is a subspace, it suffices to check that cv+dw € W for all v,w € W and ¢, d € R.

Example 2.10. Let us list some examples of subspaces of the three-dimensional Eu-

clidean space R3.

(a) The trivial subspace W = {0}. Demonstrating closure is easy: since there is only
one element 0 in W, we just need to check that 0+0 =0 € W and ¢c0 =0 € W for every
scalar c.

(b) The entire space W = R3. Here closure is immediate because R? is a vector space
in its own right.

(c) The set of all vectors of the form (z,y,0 )T, i.e., the xy coordinate plane. To prove
closure, we check that all sums (I,y,O)T + (z, @O)T = (z+2,y —i—ﬂ,O)T and scalar
multiples ¢ (z,y,0 )T = (cx,cy,0 )T of vectors in the zy-plane remain in the plane.

(d) The set of solutions (z,y,z)" to the homogeneous linear equation

3x+2y—2=0. (2.2)
Indeed, if x = (z,y, z)T is a solution, then so is every scalar multiple ¢x = (cz, cy, cz)T
since
3(cx)+2(cy) — (cz) =c(Bz+2y—2) =
Moreover, if X = ( Z, 7, 2)T is a second solution, the sum x +X = (z+ 7,y + ¥4,z + E)T

is also a solution, since
3(z+2)+2(y+y)—(2+2)=Bx+2y—2)+Bx+2y—2)=0.

The solution space is, in fact, the two-dimensional plane passing through the origin with
normal vector (3,2,—1)".

(e) The set of all vectors lying in the plane spanned by the vectors v; = (2,—3,0 )T

and v, = (1,0,3 )T. In other words, we consider all vectors of the form
2 1 2a+b
v=av,+bvy=a| -3 |+b[0| =] -3a |,

0 3 3b
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where a,b € R are arbitrary scalars. If v =av, +bv, and w =av, +gv2 are any two
vectors in the span, then so is

ev+dw=c(av, +bv,) +d(av, +3V2) =(act+ad)v, + (bc—i—i)\d)v2 =av, +bv,,

where a = ac+ad, b= be+bd. This demonstrates that the span is a subspace of R3. The
reader might already have noticed that this subspace is the same plane defined by (2.2).

Example 2.11. The following subsets of R? are not subspaces.

(a) The set P of all vectors of the form (z,y,1)7, ie., the plane parallel to the zy
coordinate plane passing through (0,0, 1 )T. Indeed, (0,0,0 )T ¢ P, which is the most basic
requirement for a subspace. In fact, neither of the closure axioms hold for this subset.

(b) The nonnegative orthant O = {z > 0, y > 0, z > 0}. Although 0 € O*, and
the sum of two vectors in O also belongs to O, multiplying by negative scalars takes us
outside the orthant, violating closure under scalar multiplication.

(c) The unit sphere S; = {2? + y* + 2% = 1}. Again, 0 ¢ S;. More generally, curved
surfaces, such as the paraboloid P = { z = 22 + 32 }, are not subspaces. Although 0 € P,
most scalar multiples of elements of P do not belong to P. For example, (1,1,2 )T e P,
but 2 (1,1,2)" =(2,2,4)" ¢ P.

In fact, there are only four fundamentally different types of subspaces W C R? of
three-dimensional Euclidean space:
(i) the entire three-dimensional space W = R3,

(ii) a plane passing through the origin,

(iii) a line passing through the origin,

(v) a point — the trivial subspace W = {0}.
We can establish this observation by the following argument. If W = {0} contains only
the zero vector, then we are in case (iv). Otherwise, W C R? contains a nonzero vector
0 # v, € W. But since W must contain all scalar multiples cv; of this element, it includes
the entire line in the direction of v;. If W contains another vector v, that does not lie
in the line through v,, then it must contain the entire plane {c¢v; + dv,} spanned by
vy, Vy. Finally, if there is a third vector v; not contained in this plane, then we claim
that W = R3. This final fact will be an immediate consequence of general results in this
chapter, although the interested reader might try to prove it directly before proceeding.

Example 2.12. Let I C R be an interval, and let F(I) be the space of real-valued
functions f: I — R. Let us look at some of the most important examples of subspaces of
F(I). In each case, we need only verify the closure conditions to verify that the given subset
is indeed a subspace. In particular, the zero function belongs to each of the subspaces.

(a) The space P() of polynomials of degree < n, which we already encountered.

(b) The space P(>®) = J, -, P™ consisting of all polynomials. Closure means that
the sum of any two polynomials is a polynomial, as is any scalar (constant) multiple of a
polynomial.

(¢) The space C°(I) of all continuous functions. Closure of this subspace relies on
knowing that if f(x) and g(z) are continuous, then both f(z) + g(x) and c f(x), for any
¢ € R, are also continuous — two basic results from calculus, [2, 78].
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(d) More restrictively, we can consider the subspace C™(I) consisting of all functions
f(z) that have n continuous derivatives f’(z), f”(x), ..., f™(z) on' I. Again, we need to
know that if f(x) and g(z) have n continuous derivatives, then so does ¢ f(x) + dg(x) for
all ¢,d € R.

(e) The space C*(I) = N,,>o C"(I) of infinitely differentiable or smooth functions is
also a subspace. This can be proved directly, or it follows from the general fact that the
intersection of subspaces is a subspace, cf. Exercise 2.2.23.

(f) The space A(I) of analytic functions on the interval I. Recall that a function f(z)
is called analytic at a point a if it is smooth, and, moreover, its Taylor series

") (g

n

fla)+ f'(a) (x —a) + 5 f'(a) (@ —a)* + -+ = (2.3)

converges to f(x) for all x sufficiently close to a. (The series is not required to converge on
the entire interval I.) Not every smooth function is analytic, and so A(I) € C>(I). An
explicit example of a smooth but non-analytic function can be found in Exercise 2.2.30.

(g) The set of all mean zero functions. The mean or average of an integrable function
defined on a closed interval I = [a,b] is the real number

_ 1 b
f= ba/a f(x)dx. (2.4)

b
In particular, f has mean zero if and only if / f(z)dr =0. Since f+g = f + 7, and

cf = cf, sums and scalar multiples of mean zero functions also have mean zero, proving
closure.

(h) Fix z, € I. The set of all functions f(x) that vanish at the point, f(z,) = 0, is
a subspace. Indeed, if f(z,) = 0 and g(z,) = 0, then, clearly (c¢f + dg)(z,) = ¢ f(zy) +
dg(xz,) =0 for all ¢,d € R, proving closure. This example can evidently be generalized to
functions that vanish at several points, or even on an entire subset S C I.

(i) The set of all solutions u = f(z) to the homogeneous linear differential equation

u' 4+ 24 —3u=0.

Indeed, if f(z) and g(x) are solutions, then so is f(z) + g(z) and ¢ f(x) for all ¢ € R. Note
that we do mot need to actually solve the equation to verify these claims! They follow
directly from linearity:

(f+9)"+2(f+9) =3(f+9)=("+2f =3f)+(¢"+2¢9 —3g9) =0,
(cf)" +2(cf) =3(cf)=c(f"+2f =3f)=0.

Remark. In the last three examples, 0 is essential for the indicated set of functions to be
a subspace. The set of functions such that f(z,) = 1, say, is not a subspace. The set of
functions with a given nonzero mean, say f = 3, is also not a subspace. Nor is the set of
solutions to an inhomogeneous ordinary differential equation, say uv” + 2u' — 3u =z — 3.
None of these subsets contain the zero function, nor do they satisfy the closure conditions.

f We use one-sided derivatives at any endpoint belonging to the interval.
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Exercises
)T

2.2.1.(a) Prove that the set of all vectors (z,y,z)" such that x —y + 4z = 0 forms a subspace
of R3. (b) Explain why the set of all vectors that satisfy  — y + 4z = 1 does not form a
subspace.

2.2.2. Which of the following are subspaces of R3? Justify your answers! (a) The set of all
vectors (z,y,2)" satisfying z+y+2z+1=0. (b) The set of vectors of the form (¢, —t,0)7
for t € R. (c¢) The set of vectors of the form (r —s,r + 2s, —s)T for r,s € R. (d) The
set of vectors whose first component equals 0. (e) The set of vectors whose last component
equals 1. (f) The set of all vectors (z,y, z)T with x > y > z. (g) The set of all solutions
to the equation z = z—y. (h) The set of all solutions to z = zy. (i) The set of all solutions

to 22 +y? + 22 =0. (j) The set of all solutions to the system zy =yz = x 2.

2.2.3. Graph the following subsets of R? and use this to explain which are subspaces:
(a) The line (t, —t,3t)T for t € R. (b) The helix (cost,sint,t)T. (¢) The surface
x—2y+32=0. (d) The unit ball 22 +y*4 22 < 1. (e) The cylinder (y+2)>+(z—1)* = 5.
(f) The intersection of the cylinders (z —1)? + 4> =1 and (z +1)? + % = 1.

2.2.4. Show that if W C R? is a subspace containing the vectors (1,2,-1 )T, (2,0,1 )T,
(0,—1,3)T, then W = R®,

2.2.5. True or false: An interval is a vector space.

2.2.6.(a) Can you construct an example of a subset S C R? with the property that cv € §

for all c € R, v € S, and yet S is not a subspace? (b) What about an example in which
v+ w € S for every v,w € S, and yet S is not a subspace?

2.2.7. Determine which of the following sets of vectors x = (x,z5,...,2, )T are subspaces of
R™: (a) all equal entries ; = --- = x,; (b) all positive entries: z; > 0; (c¢) first and last
entries equal to zero: x; = x,, = 0; (d) entries add up to zero: x; + --- +x,, = 0; (e) first

and last entries differ by one: z; —x,, = 1.

2.2.8. Prove that the set of all solutions x of the linear system Ax = b forms a subspace if and
only if the system is homogeneous.

2.2.9. A square matrix is called strictly lower triangular if all entries on or above the main
diagonal are 0. Prove that the space of strictly lower triangular matrices is a subspace of
the vector space of all n X n matrices.

2.2.10. Which of the following are subspaces of the vector space of n x n matrices M, ,,?
The set of all (a) regular matrices; (b) nonsingular matrices; (c¢) singular matrices;
(d) lower triangular matrices; (e) lower unitriangular matrices; (f) diagonal matrices;

(g) symmetric matrices; (h) skew-symmetric matrices.

& 2.2.11. The trace of an n x n matrix A € M, . is defined to be the sum of its diagonal
entries: tr A = ay; + a9y + -+ - + a,,,,- Prove that the set of trace zero matrices, tr A = 0, is
a subspace of M

nxn:

2.2.12.(a) Is the set of n x n matrices with det A =1 a subspace of M .7
(b) What about the matrices with det A = 07

2.2.13. Let V = CO(R) be the vector space consisting of all continuous functions f:R — R.
Explain why the set of all functions such that f(1) = 0 is a subspace, but the set of
functions such that f(0) = 1 is not. For which values of a,b does the set of functions such
that f(a) = b form a subspace?
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2.2.14. Which of the following are vector spaces? Justify your answer! (a) The set of all row
vectors of the form (a,3a). (b) The set of all vectors of the form (a,a+1). (¢) The set
of all continuous functions for which f(—1) = 0. (d) The set of all periodic functions of
period 1, ie., f(z + 1) = f(x). (e) The set of all non-negative functions: f(z) > 0.

(f) The set of all even polynomials: p(z) = p(—z). (g) The set of all polynomials p(z) that

have = — 1 as a factor. (h) The set of all quadratic forms ¢(z,y) = az? + bzy + cy.

2.2.15. Determine which of the following conditions describe subspaces of the vector space c!
consisting of all continuously differentiable scalar functions f(z).
(a) f(2) = f(3). (b) f(2) =f(@3), (c) f'(x) + f(x) =0, (d) f(2—2)=f(z),
(e) flz+2)=f(x)+2, (f) f(—=z)=€"f(z). (g) f(z) =a+b|z]for some a,be R,

2.2.16. Let V = C%[a,b] be the vector space consisting of all functions f(t) that are defined
and continuous on the interval 0 < ¢ < 1. Which of the following conditions define
subspaces of V7 Explain your answer. (a) f(0) =0, (b) f(0) =2 f(1), (c) f(0)f(1) =1,
(d) f(0)=0or f(1) =0, () fF(A—1t)=—tf(t), () FOL—-t)=1=F(D),

(8) f(%):/olf(t)dt, (h) /Ol(tfl)f(t)dt:(), (i) /Otf(s)sinsds:sint.

2.2.17. Prove that the set of solutions to the second order ordinary differential equation
v’ = zu is a vector space.

2.2.18. Show that the set of solutions to v’ = = 4+ u does not form a vector space.

2.2.19.(a) Prove that C!([a,b],R?), which is the space of continuously differentiable
parameterized plane curves f:[a,b] — R2, is a vector space.
(b) Is the subset consisting of all curves that go through the origin a subspace?

2.2.20. A planar vector field v(z,y) = (u(z,y),v(z,y) )T is called irrotational if it has zero
ou , Ov

divergence: V - v = E + N = 0. Prove that the set of all irrotational vector fields is a
€z Yy

subspace of the space of all planar vector fields.

2.2.21. Let C C R®® denote the set of all convergent sequences of real numbers, where R> was
defined in Exercise 2.2.21. Is C' a subspace?

{ 2.2.22. Show that if W and Z are subspaces of V, then (a) their intersection W N Z is a
subspace of V', (b) their sum W+ Z = {w+2z|w € W, z € Z} is also a subspace, but
(¢) their union W U Z is not a subspace of V', unless W C Z or Z C W.

¢ 2.2.23. Let V be a vector space. Prove that the intersection 1 W; of any collection (finite or
infinite) of subspaces W; C V' is a subspace.

© 2.2.24. Let W C V be a subspace. A subspace Z C V is called a complementary subspace to W
if (i) WnNZ={0},and (i) W+Z =V, ie., every v €V can be written as v =w + z for
w € W and z € Z. (a) Show that the - and y-axes are complementary subspaces of R2.
(b) Show that the lines # = y and & = 3y are complementary subspaces of R?. (c) Show
that the line (a,2a,3a )T and the plane x 4+ 2y + 3z = 0 are complementary subspaces of
R3. (d) Prove that if v =w + z, then w € W and z € Z are uniquely determined.

2.2.25.(a) Show that V = {(v,0)|v € V} and W, = {(0,w)|w € W } are complementary
subspaces, as in Exercise 2.2.24, of the Cartesian product space V' x W, as defined in
Exercise 2.1.13.  (b) Prove that the diagonal D = {(v,v)} and the anti-diagonal
A = {(v,—v)} are complementary subspaces of V' x V.

2.2.26. Show that the set of skew-symmetric n X n matrices forms a complementary subspace
to the set of symmetric n x n matrices. Explain why this implies that every square matrix
can be uniquely written as the sum of a symmetric and a skew-symmetric matrix.
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2.2.27.(a) Show that the set of even functions, f(—xz) = f(x), is a subspace of the vector space
of all functions F(R). (b) Show that the set of odd functions, g(—x) = — g(x), forms a
complementary subspace, as defined in Exercise 2.2.24. (¢) Explain why every function can
be uniquely written as the sum of an even function and an odd function.

© 2.2.28. Let V be a vector space. A subset of the form A = {w +a|w € W}, where W C V is
a subspace and a € V is a fixed vector, is known as an affine subspace of V. (a) Show that
an affine subspace A C V is a genuine subspace if and only if a € W. (b) Draw the affine
subspaces A C R? when (i) W is the z-axis and a = (2,1 )T, (it) W is the line y = %x
and a= (1,1 )T7 (#ii) W is the line { (¢, —t)T |t e R}, and a = (2, —2)T. (c) Prove that
every affine subspace A C R? is either a point, a line, or all of R (d) Show that the plane
z — 2y + 3z = 1 is an affine subspace of R3. (e) Show that the set of all polynomials such
that p(0) =1 is an affine subspace of P,

© 2.2.29. Quotient spaces: Let V be a vector space and W C V a subspace. We say that
two vectors u,v € V are equivalent modulo W if u — v € W. (a) Show that this

defines an equivalence relation, written u ~y, v on V, ie., (i) v ~y, v for every v;

(@) if u ~yy v, then v~y u; and (éii) if, in addition, v ~y; 2, then u ~y, z. (b) The
equivalence class of a vector u € V is defined as the set of all equivalent vectors,

written [u]y, = {v € V | v ~p, u}. Show that [0]y;; = W. (¢) Let V = R? and

W = {(z,y )T | z = 2y }. Sketch a picture of several equivalence classes as subsets of
R2. (d) Show that each equivalence class [u]y for u € V is an affine subspace of V, as in
Exercise 2.2.28. (e) Prove that the set of equivalence classes, called the quotient space and
denoted by V/W = {[u]| u € V' }, forms a vector space under the operations of addition,
[uly + [Vl = [u+ v]y, and scalar multiplication, ¢[u]y, = [culy,. What is the zero

element? Thus, you first need to prove that these operations are well defined, and then
demonstrate the vector space axioms.

¢ 2.2.30. Define f(z) = { T a0,
0, z <0.
(a) Prove that all derivatives of f vanish at the origin: f(") (0)=0forn=0,1,2,....
(b) Prove that f(x) is not analytic by showing that its Taylor series at a = 0 does not
converge to f(z) when z > 0.
1
T l4a?’
series converges for | x| < 1, but diverges for |z | > 1. (¢) Prove that f(x) is analytic at © = 0.

2.2.31. Let f(z) (a) Find the Taylor series of f at a = 0. (b) Prove that the Taylor

2.3 Span and Linear Independence

The definition of the span of a collection of elements of a vector space generalizes, in a
natural fashion, the geometric notion of two vectors spanning a plane in R3. As such, it
describes the first of two universal methods for constructing subspaces of vector spaces.

Definition 2.13. Let v,...,v, be elements of a vector space V. A sum of the form
k
V) + Vo + 0 vy = Z CiV;, (2.5)
i=1
where the coefficients ¢y, ¢, . . ., ¢;, are any scalars, is known as a linear combination of the
elements vy,...,v,. Their span is the subset W = span {v,,...,v,} C V consisting of all
possible linear combinations with scalars ¢, ..., ¢, € R.
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Figure 2.4. Plane and Line Spanned by Two Vectors.

For instance, 3v, + v, — 2v3, 8v; — %vg = 8vy +0vy — %v3, vy = 0vy +1v,y, +
Ovg, and 0 = 0v; + 0v, + 0v, are four different linear combinations of the three vector
space elements v, vy, vy € V.

The key observation is that the span always forms a subspace.

Proposition 2.14. The span W = span {v,,...,v,} of any finite collection of vector
space elements v,,...,v, € V is a subspace of the underlying vector space V.

Proof: We need to show that if
v=cvy+ o vy and V=0V, + - GV
are any two linear combinations, then their sum is also a linear combination, since
V+V=(c;+c)vi+ - F (e, +C) Vv =V + o0 F GV,
where ¢; = ¢, +¢;. Similarly, for any scalar multiple,
av=(ac)vi+ - +(ac) vy =cvi+ o+ vy,

where ¢ = ac;, which completes the proof. Q.E.D.

Example 2.15. Ezamples of subspaces spanned by vectors in R3:

(i) If v, # 0 is any non-zero vector in R?, then its span is the line {cv,|c € R}
consisting of all vectors parallel to v,. If v, = 0, then its span just contains the
origin.

(i) If v, and v, are any two vectors in R?, then their span is the set of all vectors of the
form c¢,;v; 4+ ¢yv,5. Typically, such a span prescribes a plane passing through the
origin. However, if v, and v, are parallel, then their span is just a line. The most
degenerate case occurs when v; = v, = 0, where the span is just a point — the
origin.

(74) If we are given three non-coplanar vectors vy, v,, vs, then their span is all of R3, as
we shall prove below. However, if they all lie in a plane, then their span is the
plane — unless they are all parallel, in which case their span is a line — or, in the
completely degenerate situation v, = v, = v5 = 0, a single point.

Thus, every subspace of R3 can be realized as the span of some set of vectors. One can
consider subspaces spanned by four or more vectors in R?, but these continue to be limited
to being either a point (the origin), a line, a plane, or the entire three-dimensional space.
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A crucial question is to determine when a given vector belongs to the span of a
prescribed collection.

Example 2.16. Let W C R? be the plane spanned by the vectors v, = (1,-2,1 )T and

vy, =1(2,-3,1 )", Question: Is the vector v = (0,1,—1)" an element of W? To answer,
we need to see whether we can find scalars c;, ¢, such that

0 1 2 ¢y +2¢
V=1V, +cyVy; that is, 1l =c| 2+ 3= -2¢ -3¢
-1 1 1 ¢y + ¢y

Thus, ¢, c, must satisfy the linear algebraic system
¢, +2¢y =0, —2c¢; — 3¢y =1, ¢ +epg=—1

Applying Gaussian Elimination, we find the solution ¢, = =2, ¢, = 1, andsov = —2v,;+v,
does belong to the span. On the other hand, v = (1,0,0 )T does not belong to W. Indeed,
there are no scalars ¢, ¢, such that v = ¢; vy + ¢, vy, because the corresponding linear
system is incompatible.

Warning. It is entirely possible for different sets of vectors to span the same subspace.
For instance, e; = (1,0,0 )T and e, = (0,1,0 )T span the zy-plane in R3, as do the three
coplanar vectors v, = (1, -1, O)T vy =(—1,2,0 )T , vy =(2,1,0 )T.

Example 2.17. Let V = F(R) denote the space of all scalar functions f(x).

(a) The span of the three monomials f,(x) = 1, f,(z) = z, and f;(z) = 2? is the set
of all functions of the form

f(@) =cy f1(x) + g fo(m) + 5 f3(x) = ¢ +czx+03m2,

where ¢,, ¢y, c5 are arbitrary scalars (constants). In other words, span {1,z,2%} = P
is the subspace of all quadratic (degree < 2) polynomials. In a similar fashion, the space
P(") of polynomials of degree < n is spanned by the monomials 1, z, 22, ..., z".

(b) The next example plays a key role in many applications. Let 0 # w € R. Consider
the two basic trigonometric functions f,(z) = coswz, fy(x) = sinwz of frequency w, and

hence period 27 /w. Their span consists of all functions of the form
f(x) =cy fi(x) + ¢y folx) = ¢y coswa + cysinwa. (2.6)

For example, the function cos(wz + 2) lies in the span because, by the addition formula
for the cosine,
cos(wz + 2) = (cos2) coswx — (sin2) sinwx

is a linear combination of cos w x and sin w x, with respective coeflicients cos 2, sin 2. Indeed,
we can express a general function in the span in the alternative phase-amplitude form

flz) =c coswz + cysinwz = rcos(wz — 9), (2.7)

in which » > 0 is known as the amplitude and 0 < § < 27 the phase shift. Indeed,
expanding the right-hand side, we obtain

rcos(wx —J) = (rcosd) coswx + (rsind) sinwz, and hence ¢, =rcosd, ¢, =rsind.
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Figure 2.5.  Graph of 3cos(2z — 1).

Thus, (r,§) are the polar coordinates of the point ¢ = (¢,, ¢,) € R? prescribed by the coef-
ficients. We conclude that every linear combination of sinwx and coswx can be rewritten
as a single cosine containing an extra phase shift. Figure 2.5 shows the particular function
3cos(2x — 1), which has amplitude r = 3, frequency w = 2, and phase shift § = 1. The
first peak appears at © = §/w = %

(¢) The space T of quadratic trigonometric polynomials is spanned by the functions

1, cosz, sin x, cos? z, coszx sinzx, sin? z.

Its general element is a linear combination
q(2) = ¢y + ¢, cos T + cysinx + ¢5 cos? & + ¢, cosx sinx + ¢ sin? (2.8)
where ¢, ..., c5 are arbitrary constants. A more useful spanning set for the same subspace
consists of the trigonometric functions
1, cos T, sin x, cos2x, sin2x. (2.9)
Indeed, by the double-angle formulas, both
cos2x = cos® z — sin® z, sin2x = 2 sinx cosx,
have the form of a quadratic trigonometric polynomial (2.8), and hence both belong to

7@ . On the other hand, we can write

2

00521':%0052x+%, cos T sinx:%SmZm, sin :U:—%cost—l—%,

in terms of the functions (2.9). Therefore, the original linear combination (2.8) can be
written in the alternative form

q(z) = (co + %03 + %05) + ¢y cosx + cysinx + (%(33 — %cg,) cos2z + %c4sin2x
=Cy+ ¢ cosx + Cysine + ¢ cos2x + ¢, sin 2w, (2.10)
and so the functions (2.9) do indeed span 7). Tt is worth noting that we first character-
ized T as the span of 6 functions, whereas the second characterization required only 5
functions. It turns out that 5 is the minimal number of functions needed to span 72, but
the proof of this fact will be deferred until Chapter 4.
(d) The homogeneous linear ordinary differential equation
w424 —3u=0 (2.11)
considered in part (i) of Example 2.12 has two solutions: f,(z) = e and f,(x) = e~ 32.
(Now may be a good time for you to review the basic techniques for solving linear, constant
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coefficient ordinary differential equations, cf. [7,22]; see also Chapter 7.) Its general
solution is, in fact, a linear combination

u=cy f1(z)+cyfolx) =c e” + 026_3””,

where ¢, ¢, are arbitrary scalars. Thus, the vector space of solutions to (2.11) is described
as the span of these two basic solutions. The fact that there are no other solutions is
not obvious, but relies on the basic uniqueness theorem for ordinary differential equations;
further details can be found in Theorem 7.34.

Remark. One can also define the span of an infinite collection of elements of a vector space.
To avoid convergence issues, one should consider only finite linear combinations (2.5). For
example, the span of the monomials 1,z, 2, 2%, ... is the subspace P(*) of all polynomials
— not the space of analytic functions or convergent Taylor series. Similarly, the span of
the functions 1, cosz, sinx, cos 2x,sin 2x, cos 3x,sin 3x, . . . is the space T (20) containing all

trigonometric polynomials, of fundamental importance in the theory of Fourier series, [61].

Exercises
-1 2 5
2.3.1. Show that 2 | belongs to the subspace of R? spanned by | —1 |, | —4 | by writing
3 2 1
it as a linear combination of the spanning vectors.
-3 1 -2 -2
7 -3 6 4
2.3.2. Show that 6 is in the subspace of R4 spanned by 3 6
1 4 -7

1
2.3.3.(a) Determine whether (—2) is in the span of ( ) and
-3

-2
0
1 1\ (0 K
spanof | 2 |,| =2 [, 3|7 (¢)Is _1 | in the span of
2 0) \4 Ty

2.3.4. Which of the following sets of vectors span all of R2? (a)

Do (2
o (30 (o (DL Do @) (1)

2.3.5.(a) Graph the subspace of R? spanned by the vector v, =(3,0,1 )T.
(b) Graph the subspace spanned by the vectors v; = (3,—-2,—1 )T, vy =(-2,0,—1 )T.
(¢) Graph the span of v; = (1,0, fl)T, v, = (0, fl,l)T, vy = (1, fl,O)T.

2.3.6. Let U be the subspace of R? spanned by u, = (1,2, 3)T, u, = (2, —1,O)T. Let V be
the subspace spanned by v; = (5,0, 3)T, vy, = (3,1, 3)T. Is V' a subspace of U? Are U
and V the same?

2.3.7.(a) Let S be the subspace of M, , consisting of all symmetric 2 X 2 matrices. Show that

S is spanned by the matrices ((1) 8), <8 (1)), and <(1) é) (b) Find a spanning set of

the space of symmetric 3 x 3 matrices.
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2.3.8.(a) Determine whether the polynomials 22+ 1,22 — 1,22 + 2 + 1 span P,
(b) Do 2® —1,z% + 1,2 — 1,1 span PG (¢) What about z3, 2% + 1,z% — 2,z + 17
2.3.9. Determine whether any of the following functions lies in the subspace spanned by 1, x,
sinz,sin?2: (a) 3—5z, (b) 2 +sin?z, (¢) sinz — 2cosz, (d) cos’z, (e) zsinz, (f) e*.
2.3.10. Write the following trigonometric functions in phase-amplitude form:
(a) sin3z, (b) cosz —sinz, (c¢) 3cos2z+4sin2z, (d) coszsinz.
2.3.11.(a) Prove that the set of solutions to the homogeneous ordinary differential equation
v’ — 44’ 4+ 3u = 0 is a vector space. (b) Write the solution space as the span of a finite

number of functions. (c¢) What is the minimal number of functions needed to span the
solution space?

2.3.12. Explain why the functions 1, cos z,sin x span the solution space to the third order

ordinary differential equation v’ 4+ v = 0.

2.3.13. Find a finite set of real functions that spans the solution space to the following
homogeneous ordinary differential equations: (a) v’ — 2u = 0, (b) u” + 4u = 0,
(¢) v =30 =0, (d) v+ +u=0, () u"" —5u" =0, (f) u® +u=0.

2.3.14. Consider the boundary value problem v’ +4u =0, 0 <z <7, u(0) =0, u(r) = 0.
(a) Prove, without solving, that the set of solutions forms a vector space.

(b) Write this space as the span of one or more functions. Hint: First solve the differential
equation; then find out which solutions satisfy the boundary conditions.

2.3.15. Which of the following functions lie in the span of the vector-valued functions

() - (). s ()
@ () o (N2) @ (12) @ (155) @ (37)

2.3.16. True or false: The zero vector belongs to the span of any collection of vectors.

2.3.17. Prove or give a counter-example: if z is a linear combination of u, v, w, then w is a
linear combination of u, v, z.

< 2.3.18. Suppose vy,...,v, span V. Let Vinils---»Vy € V be any other elements. Prove that

the combined collection vy,..., v, also spans V.

¢ 2.3.19.(a) Show that if v is a linear combination of vy,...,v,,, and each v is a linear
combination of wy,...,w,, then v is a linear combination of w,..., w,.
(b) Suppose vy,...,v,, span V. Let wy,...,w,, € V be any other elements. Suppose that
each v, can be written as a linear combination of wy,...,w, . Prove that wy,...,w,, also
span V.

<& 2.3.20. The span of an infinite collection v, v,,vs,... € V of vector space elements is defined

n
as the set of all finite linear combinations > ¢, v;, where n < oo is finite but arbitrary.
i=1
(a) Prove that the span defines a subspace of the vector space V.
(b) What is the span of the monomials 1, z,z2, z3,... 7

Linear Independence and Dependence

Most of the time, all of the vectors used to form a span are essential. For example, we
cannot use fewer than two vectors to span a plane in R, since the span of a single vector is
at most a line. However, in degenerate situations, some of the spanning elements may be
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redundant. For instance, if the two vectors are parallel, then their span is a line, but only
one of the vectors is really needed to prescribe the line. Similarly, the subspace spanned by
the polynomials p, () =z —2, py(z) =32 +4, py(r) = —x+1, is the vector space P
consisting of all linear polynomials. But only two of the polynomials are really required to
span P, (The reason will become clear soon, but you may wish to see whether you can
demonstrate this on your own.) The elimination of such superfluous spanning elements is
encapsulated in the following important definition.

Definition 2.18. The vector space elements v,,...,v, € V are called linearly dependent
if there exist scalars ¢y, ..., ¢, not all zero, such that
v+ o v =0. (2.12)

Elements that are not linearly dependent are called linearly independent.

The restriction that not all the ¢;’s are zero is essential: if ¢; = --- = ¢;, = 0, then the
linear combination (2.12) is automatically zero. Thus, to check linear independence, one
needs to show that the only linear combination that produces the zero vector (2.12) is this
trivial one. In other words, ¢; = --- = ¢;, = 0 is the one and only solution to the vector
equation (2.12).

Example 2.19. Some examples of linear independence and dependence:

(a) The vectors

1 0 -1
vV, = 21, vo= 13|, Vg = 4],
-1 1 3

are linearly dependent, because
v, —2vy+ vy =0.

On the other hand, the first two vectors v,,v, are linearly independent. To see this,
suppose that

¢ 0
vy +eve= | 2¢;4+3¢c, | =10
—cp t+ ¢y 0
For this to happen, c;, c, must satisfy the homogeneous linear system
¢, =0, 2¢y +3¢c, =0, —cy + ¢y =0,
which, as you can check, has only the trivial solution ¢; = ¢, = 0.
(b) In general, any collection vy,...,v, that includes the zero vector, say v, = 0, is
automatically linearly dependent, since 104+ 0v, + --- 4+ 0v, = 0 is a nontrivial linear

combination that adds up to O.
(¢) Two vectors v,w € V are linearly dependent if and only if they are parallel, meaning
that one is a scalar multiple of the other. Indeed, if v = aw, then v —aw = 0 is a
nontrivial linear combination summing to zero. Conversely, if cv +dw = 0 and ¢ # 0,
then v = — (d/c¢)w, while if ¢ = 0 but d # 0, then w = 0.
(d) The polynomials

pl(l')zl'—Q, pz(x)=x2—5m+4, pg(m)=3x2—4m, p4(l'):l'2—]_,

are linearly dependent, since

P () + po(2) — py(z) +2p,(x) =0
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is a nontrivial linear combination that vanishes identically. On the other hand, the first
three polynomials,

pi(x) =2 — 2, py(2) = 2% — 52 4 4, ps(z) = 327 — 4w,
are linearly independent. Indeed, if the linear combination
101 (%) + o po (@) + ¢3pa(2) = (¢ + 3¢3) 2% + (¢ — 5y —deg)w — 2¢; +4¢, =0

is the zero polynomial, then its coefficients must vanish, and hence c,, ¢y, c5 are required
to solve the homogeneous linear system

¢y +3c3 =0, ¢ —95cy —4cy =0, —2¢y +4cy =0.
But this has only the trivial solution ¢; = ¢, = ¢4 = 0, and so linear independence follows.

Remark. In the last example, we are using the basic fact that a polynomial is identically
Z€ero,

p(r) =ay+a,z+ay2* + -+ +a, 2" = forall =z,
if and only if its coefficients all vanish: a; = a; = --- = a,, = 0. This is equivalent to the
“obvious” fact that the basic monomial functions 1,z, 22, ..., 2" are linearly independent.

FExercise 2.3.36 asks for a bona fide proof.

Example 2.20. The trigonometric functions

1, cosz, sin x, cos® x, cosx sinzx, sin? z,

which were used to define the vector space T2 of quadratic trigonometric polynomials,
are, in fact, linearly dependent. This is a consequence of the basic trigonometric identity

cos’z +sin’z =1,

which can be rewritten as a nontrivial linear combination

2

1+0cosx+0sinz+ (—1)cos’z +0cosz sinz + (—1)sin*z =0

that equals the zero function. On the other hand, the alternative spanning set
1, cosz, sin x, cos2x, sin2x
is linearly independent, since the only identically zero linear combination,
€y + ¢y coST + ¢y SinxT + 5 cos2x + ¢, sin2x = 0,

turns out to be the trivial one ¢, = --- = ¢, = 0. However, the latter fact is not as obvious,
and requires a bit of work to prove directly; see Exercise 2.3.37. An easier proof, based on
orthogonality, will appear in Chapter 4.

Let us now focus our attention on the linear independence or dependence of a set
of vectors vy,...,v, € R" in Euclidean space. We begin by forming the n x k matrix
A = (v, ... v, ) whose columns are the given vectors. (The fact that we use column
vectors is essential here.) Our analysis is based on the very useful formula

€
Ca
Ac=cy v+ - +¢. vy, where c= -, (2.13)

Ck
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that expresses any linear combination in terms of matrix multiplication. For example,

13 0 c ¢+ 3¢, 1 3 0
-1 2 1 C | = —ert+2c+c3 | = | -1 ]| +0e 2] ey 1
4 -1 =2 Cq deg —cy —2¢4 4 -1 -2

Formula (2.13) follows directly from the rules of matrix multiplication; see also Exercise
1.2.34(c). It enables us to reformulate the notions of linear independence and span of
vectors in R”™ in terms of linear algebraic systems. The key result is the following:

Theorem 2.21. Let v,...,v, € R” and let A = (v, ... v, ) be the corresponding n x k
matrix whose columns are the given vectors.
(a) The vectors v,,...,v, € R™ are linearly dependent if and only if there is a non-zero
solution ¢ # 0 to the homogeneous linear system Ac = 0.
(b) The vectors are linearly independent if and only if the only solution to the homoge-
neous system Ac = 0 is the trivial one, ¢ = 0.
(¢) A vector b lies in the span of vy,...,v, if and only if the linear system Ac = b is
compatible, i.e., has at least one solution.

Proof: We prove the first statement, leaving the other two as exercises for the reader. The
condition that v,,..., v, be linearly dependent is that there exists a nonzero vector

c:(cl,cz,...,ck)T;éO such that Ac=cvi+ -+ +¢, v, =0.

Therefore, linear dependence requires the existence of a nontrivial solution to the homoge-
neous linear system Ac = 0. Q.E.D.

Example 2.22. Let us determine whether the vectors

1 3 1 4
v, = 21, vo=1[(0], vo=| 4], v, = |2 (2.14)
-1 4 6 3

are linearly independent or linearly dependent. We combine them as column vectors into
a single matrix

1 3 1 4
A= 2 0 -4 2
-1 4 6 3

According to Theorem 2.21, we need to figure out whether there are any nontrivial solutions
to the homogeneous equation A ¢ = 0; this can be done by reducing A to row echelon form

1 3 1 4
U=[0 -6 —6 —6|. (2.15)
0 0 0 0

. . T
The general solution to the homogeneous system Ac = 0isc = (2¢3 — ¢y, — €5 — ¢4,C3,¢4 ),
where c3, ¢, — the free variables — are arbitrary. Any nonzero choice of ¢,, ¢, will produce

a nontrivial linear combination

(2¢c5—cy) vy +(—cg—¢y)vg+c3vy+c,vy =0

that adds up to the zero vector. We conclude that the vectors (2.14) are linearly dependent.
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In fact, in this particular case, we didn’t even need to complete the row reduction if we
only need to check linear (in)dependence. According to Theorem 1.47, any coefficient ma-
trix with more columns than rows automatically has a nontrivial solution to the associated
homogeneous system. This implies the following result:

Lemma 2.23. Any collection of k£ > n vectors in R" is linearly dependent.

Warning. The converse to this lemma is not true. For example, v, = (1,2,3)T and

vy=(—-2,-4,-6 )T are two linearly dependent vectors in R3, since 2v, + v, = 0. For a
collection of n or fewer vectors in R", one needs to analyze the homogeneous linear system.

Lemma 2.23 is a particular case of the following general characterization of linearly
independent vectors.

Proposition 2.24. A set of k vectors in R™ is linearly independent if and only if the
corresponding n X k matrix A has rank k. In particular, this requires k < n.

Or, to state the result another way, the vectors are linearly independent if and only
if the homogeneous linear system Ac = 0 has no free variables. Proposition 2.24 is an
immediate corollary of Theorems 2.21 and 1.47.

Example 2.22 (continued). Let us now see which vectors b € R? lie in the span of

the vectors (2.14). According to Theorem 2.21, this will be the case if and only if the linear
system Ac = b has a solution. Since the resulting row echelon form (2.15) has a row of
all zeros, there will be a compatibility condition on the entries of b, and hence not every
vector lies in the span. To find the precise condition, we augment the coefficient matrix,
and apply the same row operations, leading to the reduced augmented matrix

1 3 1 4]
0 -6 —6 —6 | b,—2b
0 0 0 0 |by+ZIb,—30b

Therefore, b = (b, by, b4 )" lies in the span if and only if —3by + by + by = 0. Thus,
these four vectors span only a plane in R?3.

The same method demonstrates that a collection of vectors will span all of R™ if and only
if the row echelon form of the associated matrix contains no all-zero rows, or, equivalently,
the rank is equal to n, the number of rows in the matrix.

Proposition 2.25. A collection of k vectors spans R™ if and only if their n x k& matrix
has rank n. In particular, this requires k > n.

Warning. Not every collection of n or more vectors in R™ will span all of R™. A coun-
terexample was already provided by the vectors (2.14).
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Exercises

2.3.21. Determine whether the given vectors are linearly independent or linearly dependent:
1 0
1 2 1 -2 2 -1 5
@ (3).(2) o (1) (2). @ (2 (0).(3) @ ()()
1 3 2 1 2 0
) -1 ) -1 ’ (f) 1 ) —2 ) -3 ) -1 ;
0 2 3 1 0 4

4 —6 2 —1 5 1 1 2 1
2 -3 1 3 1 0 0 2 2
(g) 0 ) 0 b (h) _1 7 1 9 2 ? (1) 1 ) 0 ) 1 ) 3 )
—6 9 3 0 -3 0 1 0 4
1 —2 2
2.3.22.(a) Show that the vectors g , 7? , _1 are linearly independent. (b) Which
1 1 ~1
1 1 0 0
. . . . 1 g 0 1 . 0
of the following vectors are in their span? (i) L (i) L (i) L (iv) 0
1 0 0 0
(¢) Suppose b = (a,b,c, d)T lies in their span. What conditions must a, b, ¢, d satisfy?
1 1 1 1
1 1 —1 —1 . .
2.3.23.(a) Show that the vectors 11 ol o | are linearly independent.
0 0 1 -1

(b) Show that they also span R*. (¢) Write (1,0,0,1)” as a linear combination of them.

2.3.24. Determine whether the given row vectors are linearly independent or linearly dependent:
(a) (2,1),(-1,3),(5,2), (b) (1,2,-1),(2,4,-2), (¢) (1,2,3),(1,4,8),(1,5,7),
(d) (1,1,0),(1,0,3),(2,2,1),(1,3,4), (e) (1,2,0,3),(—-3,-1,2,-2),(3,—4,-4,5),
(f) (25 17_1,3) 5(_1737170) ) (57 1a27 _3)

2.3.25. True or false: The six 3 x 3 permutation matrices (1.30) are linearly independent.

2.3.26. True or false: A set of vectors is linearly dependent if the zero vector belongs to their span.

2.3.27. Does a single vector ever define a linearly dependent set?

2.3.28. Let x and y be linearly independent elements of a vector space V. Show that
u=ax+by, and v = cx + dy are linearly independent if and only if ad — bc # 0. Is the

entire collection x,y,u, v linearly independent?

2.3.29. Prove or give a counterexample to the following statement: If v, ..., v, are elements of
a vector space V' that do not span V, then v{,...,v, are linearly independent.
<& 2.3.30. Prove parts (b) and (c) of Theorem 2.21.
& 2.3.31.(a) Prove that if v,...,v,, are linearly independent, then every subset, e.g., v{,..., v

with k£ < m, is also linearly independent. (b) Does the same hold true for linearly
dependent vectors? Prove or give a counterexample.

2.3.32.(a) Determine whether the polynomials f;(z) = 2% -3, folx) =2—z, f3(x)=(z— 1)2,
are linearly independent or linearly dependent.
(b) Do they span the vector space of all quadratic polynomials?
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2.3.33. Determine whether the given functions are linearly independent or linearly dependent:
(a) 2 — 22, 3z, 2 +a2-2, (b) 3z -1, z(2z+ 1), z(z—1); (c) €, oL (d) sinz,
sin(z 4+ 1); (e) €%, "M, e*2; (f) sinz, sin(z + 1), sin(z +2); (g) ¥, ze”, z%e”;
(h) €%, 2T 3T, (i) x+vy, v—y+1, v+ 3y+2— these are functions of two variables.

2.3.34. Show that the functions f(z) = x and g(x) = || are linearly independent when
considered as functions on all of R, but are linearly dependent when considered as functions
defined only on Rt = {z > 0}.

© 2.3.35.(a) Prove that the polynomials p;(z) = Zn:O i 2/ fori = 1,...,k are linearly
independent if and only if the k x (n + 1) Iilatrix A whose entries are their coefficients
a;js 1 <i<k 0<j<n,hasrank k. (b) Formulate a similar matrix condition for
testing whether another polynomial ¢(z) lies in their span. (c) Use (a) to determine
whether p, (z) = 2 — 1, py(z) = 2 — 2z + 4, py(x) = at — 4, py(z) = 2?41,
py(x) = —2t 4423 + 22 +1 are linearly independent or linearly dependent. (d) Does the
polynomial ¢(z) = 23 lie in their span? If so find a linear combination that adds up to q(x).

¢ 2.3.36. The Fundamental Theorem of Algebra, [26], states that a non-zero polynomial of
degree n has at most n distinct real roots, that is, real numbers = such that p(z) = 0. Use
this fact to prove linear independence of the monomial functions 1, z, :c2, sz

Remark. An elementary proof of the latter fact can be found in Exercise 5.5.38.

© 2.3.37.(a) Let z1,2,,...,z, be a set of distinct sample points. Prove that the functions
fi(x), ..., f[i,(x) are linearly independent if their sample vectors f;, ..., f, are linearly
independent vectors in R™. (b) Give an example of linearly independent functions that have
linearly dependent sample vectors. (¢) Use this method to prove that the functions 1, cosz,
sinz, cos 2z, sin 2z, are linearly independent. Hint: You need at least 5 sample points.

2.3.38. Suppose £ (¢), ..., (t) are vector-valued functions from R to R™. (a) Prove that if
fi(tg), .., £, (ty) are linearly independent vectors in R™ at one point ¢y, then f; (¢), ..., £ (¢)

are linearly independent functions. (b) Show that f, (¢) = (1) and fy(t) = (22 tth_lt) are

linearly independent functions, even though at each ¢, the vectors f, (¢,), f5(t;) are linearly
dependent. Therefore, the converse to the result in part (a) is not valid.

© 2.3.39. The Wronskian of a pair of differentiable functions f(z), g(x) is the scalar function

f(x)  g(x)

WIf(z),g(x)] = det ( , , = f(@)g'(x) = f'(z) g(=). (2.16)
(@) ()

(a) Prove that if f, g are linearly dependent, then W| f(z), g(z)] = 0. Hence, if

W[ f(x),g(z)] £ 0, then f, g are linearly independent. (b) Let f(z) = 23, g(z) = |z |>.
Prove that f,g € C? are twice continuously differentiable and linearly independent, but

W[ f(x),g(x)] = 0. Thus, the Wronskian is not a fool-proof test for linear independence.
Remark. It can be proved, [7], that if f, g both satisfy a second order linear ordinary
differential equation, then f, g are linearly dependent if and only if W[ f(z), g(z)] = 0.

2.4 Basis and Dimension

In order to span a vector space or subspace, we must employ a sufficient number of distinct
elements. On the other hand, including too many elements in the spanning set will violate
linear independence, and cause redundancies. The optimal spanning sets are those that are
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also linearly independent. By combining the properties of span and linear independence,
we arrive at the all-important concept of a “basis”.

Definition 2.26. A basis of a vector space V' is a finite collection of elements v,,..., v, €

V that (a) spans V, and (b) is linearly independent.

n

Bases are absolutely fundamental in all areas of linear algebra and linear analysis, includ-
ing matrix algebra, Euclidean geometry, statistical analysis, solutions to linear differential
equations — both ordinary and partial — linear boundary value problems, Fourier analysis,
signal and image processing, data compression, control systems, and many others.

Example 2.27. The standard basis of R™ consists of the n vectors

1 0 0
0 1 0
0 0 0
e,=| .|, e, =| .|, e, =1 .1 (2.17)
0 0 0
0 0 1

so that e, is the vector with 1 in the i*h slot and 0’s elsewhere. We already encountered
these vectors — they are the columns of the n x n identity matrix. They clearly span R",
since we can write any vector

1
To
x=| . | =ze tre+ - +z,e, (2.18)

:I:'IL

as a linear combination, whose coefficients are its entries. Moreover, the only linear combi-
nation that yields the zero vector x = 0 is the trivial one z; = --- = z,, = 0, which shows
that e, ..., e, are linearly independent.

In the three-dimensional case R3, a common physical notation for the standard basis is

1 0 0
i=e; =101, j=e,=1[1], k=e;=10]. (2.19)
0 0 1

This is but one of many possible bases for R3. Indeed, any three non-coplanar vectors can
be used to form a basis. This is a consequence of the following general characterization of
bases in Euclidean space as the columns of a nonsingular matrix.

Theorem 2.28. Every basis of R™ consists of exactly n vectors. Furthermore, a set of
n vectors vq,...,v, € R™ is a basis if and only if the n x n matrix A = (v, ... v, ) is
nonsingular: rank A = n.

Proof: This is a direct consequence of Theorem 2.21. Linear independence requires that
the only solution to the homogeneous system Ac = 0 be the trivial one ¢ = 0. On the
other hand, a vector b € R™ will lie in the span of v, ..., v, if and only if the linear system
Ac = b has a solution. For v{,...,v,, to span all of R, this must hold for all possible
right-hand sides b. Theorem 1.7 tells us that both results require that A be nonsingular,
i.e., have maximal rank n. Q.E.D.
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Thus, every basis of n-dimensional Euclidean space R™ contains the same number of
vectors, namely n. This is a general fact, that motivates a linear algebraic characterization
of dimension.

Theorem 2.29. Suppose the vector space V has a basis v, ..., v, for some n € N. Then
every other basis of V' has the same number, n, of elements in it. This number is called
the dimension of V', and written dim V = n.

The proof of Theorem 2.29 rests on the following lemma.

Lemma 2.30. Suppose v,...,Vv, span a vector space V. Then every set of k > n ele-
ments wy,...,w, € V is linearly dependent.

Proof: Let us write each element
n

wj:z:aijvi7 j=1,...,k,

i=1

as a linear combination of the spanning set. Then

n k
Wy + - oW, = E g ;5 C5V;e

i=1j=1
1 . . . T
This linear combination will be zero whenever ¢ = (¢, ¢y, ..., ¢, )" solves the homogeneous
linear system k
E a;;c; =0, 1=1,...,n,

j=1

consisting of n equations in £ > n unknowns. Theorem 1.47 guarantees that every ho-
mogeneous system with more unknowns than equations always has a non-trivial solution
c # 0, and this immediately implies that w, ..., w, are linearly dependent. Q.E.D.

Proof of Theorem 2.29: Suppose we have two bases containing a different number of
elements. By definition, the smaller basis spans the vector space. But then Lemma 2.30
tell us that the elements in the larger purported basis must be linearly dependent, which
contradicts our initial assumption that the latter is a basis. Q.E.D.

As a direct consequence, we can now give a precise meaning to the optimality of bases.

Theorem 2.31. Suppose V is an n-dimensional vector space. Then
(a) Every set of more than n elements of V' is linearly dependent.
(b) No set of fewer than n elements spans V.
(c) A set of n elements forms a basis if and only if it spans V.
(d) A set of n elements forms a basis if and only if it is linearly independent.

In other words, once we know the dimension of a vector space, to check that a collection
having the correct number of elements forms a basis, we only need establish one of the
two defining properties: span or linear independence. Thus, n elements that span an n-
dimensional vector space are automatically linearly independent and hence form a basis;
conversely, n linearly independent elements of an n-dimensional vector space automatically
span the space and so form a basis.

Example 2.32. The standard basis of the space P(™ of polynomials of degree < n is

given by the n + 1 monomials 1,z,22,...,2". We conclude that the vector space P
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has dimension n + 1. Any other basis of P must contain precisely n + 1 polynomials.
But, not every collection of n + 1 polynomials in P( is a basis — they must be linearly
independent. We conclude that no set of n or fewer polynomials can span P while any
collection of n + 2 or more polynomials of degree < n is automatically linearly dependent.

By definition, every vector space of dimension 1 < n < oo has a basis. If a vector space
V has no basis, it is either the trivial vector space V' = {0}, which by convention has
dimension 0, or its dimension is infinite. An infinite-dimensional vector space contains an
infinite collection of linearly independent elements, and hence no (finite) basis. Examples
of infinite-dimensional vector spaces include most spaces of functions, such as the spaces of
continuous, differentiable, or mean zero functions, as well as the space of all polynomials,
and the space of solutions to a linear homogeneous partial differential equation. (On the
other hand, the solution space for a homogeneous linear ordinary differential equation
turns out to be a finite-dimensional vector space.) There is a well-developed concept of a
“complete basis” of certain infinite-dimensional function spaces, [67, 68], but this requires
more delicate analytical considerations that lie beyond our present abilities. Thus, in this
book, the term “basis” always means a finite collection of vectors in a finite-dimensional
vector space.

Proposition 2.33. If v,,...,v,, span the vector space V, then dimV < m.

Thus, every vector space spanned by a finite number of elements is necessarily finite-
dimensional, and so, if non-zero, admits a basis. Indeed, one can find the basis by succes-
sively looking at the members of a collection of spanning vectors, and retaining those that
cannot be expressed as linear combinations of their predecessors in the list. Therefore,
n = dim V is the maximal number of linearly independent vectors in the set v,,...,v
The details of the proof are left to the reader; see Exercise 2.4.22.

m:*

Lemma 2.34. The elements v, ..., v, form a basis of V if and only if every x € V can
be written uniquely as a linear combination of the basis elements:

n
X=c¢v,+ - +cnvn:Z ¢V, (2.20)
i=1
Proof: The fact that a basis spans V implies that every x € V can be written as some
linear combination of the basis elements. Suppose we can write an element
XxX=c¢vy+ - +c,v,=¢ v+ -+ +¢,V, (2.21)

as two different combinations. Subtracting one from the other, we obtain

(Cl 761)‘/1 + o+ (Cn 7/C\n)vn =0.

The left-hand side is a linear combination of the basis elements, and hence vanishes if and
only if all its coefficients ¢; — ¢; = 0, meaning that the two linear combinations (2.21) are
one and the same. Q.E.D.

One sometimes refers to the coefficients (cq,...,¢,) in (2.20) as the coordinates of the
vector x with respect to the given basis. For the standard basis (2.17) of R™, the coordinates

T . L . . .
of a vector x = (xz,,2,,...,2, ) are its entries, i.e., its usual Cartesian coordinates,
cf. (2.18).
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Example 2.35. A Wawvelet Basis. The vectors

1 1 1 0
1 1 -1 0

vi=|1] vo=1| _1 | Vg = Nk v, = N (2.22)
1 -1 0 -1

form a basis of R*. This is verified by performing Gaussian Elimination on the correspond-
ing 4 x 4 matrix

1 1 1 0

1 1 -1 0

1 -1 0 1

1 -1 0 -1
to check that it is nonsingular. This is a very simple example of a wavelet basis. Wavelets
play an increasingly central role in modern signal and digital image processing; see Sec-
tion 9.7 and [18, 88].

How do we find the coordinates of a vector, say x = (4, -2, 1,5)T, relative to the
wavelet basis? We need to find the coefficients ¢, ¢y, 3, ¢, such that

A:

X=0CV] t+CyVy+C3Vy+CyVy.

We use (2.13) to rewrite this equation in matrix form x = Ac, where ¢ = (¢, ¢y, ¢5,¢4 )r
Solving the resulting linear system by Gaussian Elimination produces

¢ =2, cy = —1, cy =3, cy=—2,

which are the coordinates of

4 1 1 1 0

-2 1 1 -1 0

X = 1 =2vy—Vvy+3vy—2v, =2 N +3 0 -2 1
5 1 -1 0 -1

in the wavelet basis. See Section 9.7 for the general theory of wavelet bases.

In general, to find the coordinates of a vector x with respect to a new basis of R"
requires the solution of a linear system of equations, namely

Ac=x for c=A'x (2.23)
The columns of A = (v, v, ... v, ) are the basis vectors, x = (z,,2,,...,z,)  are
the Cartesian coordinates of x, with respect to the standard basis e,,...,e,, while ¢ =
(¢15€9,...50p, )T contains its coordinates with respect to the new basis v;,...,v,. In

practice, one finds the coordinates ¢ by Gaussian Elimination, not matrix inversion.

Why would one want to change bases? The answer is simplification and speed — many
computations and formulas become much easier, and hence faster, to perform in a basis
that is adapted to the problem at hand. In signal processing, wavelet bases are particularly
appropriate for denoising, compression, and efficient storage of signals, including audio,
still images, videos, medical and geophysical images, and so on. These processes would be
quite time-consuming — if not impossible in complicated situations like video and three-
dimensional image processing — to accomplish in the standard basis. Additional examples
will appear throughout the text.
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Exercises

2.4.1. Determine which of the following sets of vectors are bases of R?: (a) ( 1), <_2 );

o () () @ () () @ () 6) @) () (1)

2 1 0
2.4.2. Determine which of the following are bases of R3: (a) (1 ) , (5) ;i (b) ( 1 ) ,
5 2 -5

—1 1 0 —1 1 2 —1 0 —1
31,1315 (¢ 4 |, 01, -81; (d 01, 21,1 —-11, 2.
0 0 -1 1 1 —2 —1 0 1
1 3 2 4
2.4.3. Let v = (O)7 vy = (—1), vy = (—1), v, = (—1). (a) Do vy,vy, vy, v, span
2 1 —1 3

R3? Why or why not? (b) Are v,vy,Vv3,v, linearly independent? Why or why not?

(¢) Do vy,vy, V3, v, form a basis for R3? Why or why not? If not, is it possible to choose
some subset that is a basis? (d) What is the dimension of the span of v, vy, v3,v,?
Justify your answer.

1 2 0 1
2.4.4. Answer Exercise 2.4.3 when vy = (—1), Vo = (—2) , Vg = (—2)7 v, = ( 3).
2 5 1 -1

2.4.5. Find a basis for (a) the plane given by the equation z — 2y = 0 in R?; (b) the plane
given by the equation 4z + 3y — z = 0 in R?; (c) the hyperplane z +2y + z —w =0 in R,

4 2 2 0
2.4.6.(a) Show that (O) , (1 ) , and (1) , ( 2) are two different bases for the plane
1 0 1 -1

x —2y —4z = 0. (b) Show how to write both elements of the second basis as linear
combinations of the first. (¢) Can you find a third basis?

© 2.4.7. A basis vq,...,v, of R" is called right-handed if the n X n matrix A = (v, v4 ... Vv, )
whose columns are the basis vectors has positive determinant: det A > 0. If det A < 0,
the basis is called left-handed. (a) Which of the following form right-handed bases of R3?

GO OH =000

3 1 2
(iv) (2) , (2) , (1) . (b) Show that if v, vy, v is a left-handed basis of R3, then Vs,
1 3 3

vy, Vg and — vy, vy, vy are both right-handed bases. (c) What sort of basis has det A = 07

2.4.8. Find a basis for and the dimension of the following subspaces: (a) The space of solutions

1 2 -1 1
3 0 2 -1

polynomials p(z) = az? 4+ bx + ¢ that satisfy p(1) = 0. (¢) The space of all solutions to the
"~ +4u —4u=0.

to the linear system Ax = 0, where A = ( ) (b) The set of all quadratic

. . . . 11
homogeneous ordinary differential equation u

2.4.9.(a) Prove that 1+ t27 t+ t2, 1+ 2t +t2 is a basis for the space of quadratic polynomials
P, (b) Find the coordinates of p(t) = 1+ 4t + 7t? in this basis.
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2.4.10. Find a basis for and the dimension of the span of

3 —6 2 0 2 1 0 2 !
AHERGIEIEREIGIE
—1 2 1 3 —2 9 3 1 1

2.4.11.(a) Show that 1,1 —t, (1 —t)2 (1 —t)? is a basis for PG,
(b) Write p(t) = 1+ t> in terms of the basis elements.

2.4.12. Let P™) denote the vector space consisting of all polynomials p(x) of degree < 4.
(a) Are 2® — 3z + 1, a* — 62 +3, 2 — 22% + 1 linearly independent elements of P(*)?
(b) What is the dimension of the subspace of P@ they span?

2.4.13. Let S = { 0, %, %, % } (a) Show that the sample vectors corresponding to the functions
1, cos mx, cos2mwx, and cos 37z form a basis for the vector space of all sample functions on
S. (b) Write the sampled version of the function f(z) = x in terms of this basis.

2.4.14.(a) Prove that the vector space of all 2 x 2 matrices is a four-dimensional vector space
by exhibiting a basis. (b) Generalize your result and prove that the vector space M,
consisting of all m x n matrices has dimension mmn.

n

2.4.15. Determine all values of the scalar k for which the following four matrices form a basis
) (1 -1 _(k =3 _ 1 0 _ 0 k
ot = (3 0) = (5 8) a= (1 0) A= (0 5)

2.4.16. Prove that the space of diagonal n X n matrices is an n-dimensional vector space.

2.4.17.(a) Find a basis for and the dimension of the space of upper triangular 2 x 2 matrices.
(b) Can you generalize your result to upper triangular n X n matrices?

2.4.18.(a) What is the dimension of the vector space of 2 x 2 symmetric matrices? Of skew-
symmetric matrices? (b) Generalize to the 3 x 3 case. (¢) What about n x n matrices?

© 2.4.19. A matrix is said to be a semi-magic square if its row sums and column sums (i.e., the
sum of entries in an individual row or column) all add up to the same number. An example

8 1 6
is (3 5 7 ) , whose row and column sums are all equal to 15. (a) Explain why the set
4 9 2

of all semi-magic squares is a subspace of the vector space of 3 x 3 matrices. (b) Prove
that the 3 x 3 permutation matrices (1.30) span the space of semi-magic squares. What is
its dimension? (c¢) A magic square also has the diagonal and anti-diagonal (running from
top right to bottom left) add up to the common row and column sum; the preceding 3 x 3
example is magic. Does the set of 3 x 3 magic squares form a vector space? If so, what is
its dimension? (d) Write down a formula for all 3 x 3 magic squares.

& 2.4.20.(a) Prove that if vq,...,v, forms a basis for V.C R", then m < n. (b) Under the
hypothesis of part (a), prove that there exist vectors v, 1,...,v, € R™\ V such that the
complete collection vy, ..., v, forms a basis for R". (c) Illustrate by constructing bases of
R? that include (i) the basis (1, 1, % )T of the line x = y = 2z; (47) the basis (1,0, —1 )T,
(0,1,72)T of the plane z + 2y + z = 0.

& 2.4.21. Suppose that vq,...,v, form a basis for R". Let A be a nonsingular matrix. Prove

that Avy,...,Av, also form a basis for R". What is this basis if you start with the
standard basis: v, = e;?

¢ 2.4.22. Show that if vy,...,v, span V # {0}, then one can choose a subset v, ,...,v; that
forms a basis of V. Thus, dimV = m < n. Under what conditions is dim V' = n?
<& 2.4.23. Prove that if vy,..., v, are a basis of V, then every subset thereof, e.g., Vireos Vi s IS

linearly independent.
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{ 2.4.24. Show, by example, how the uniqueness result in Lemma 2.34 fails if one has a linearly
dependent set of vectors.

{ 2.4.25. Let W C V be a subspace. (a) Prove that dimW < dim V.
(b) Prove that if dimW = dimV = n < oo, then W = V. Equivalently, if W C V' is a
proper subspace of a finite-dimensional vector space, then dim W < dim V.
(¢) Give an example in which the result is false if dim V = oc.

{$ 2.4.26. Let W, Z C V be complementary subspaces in a finite-dimensional vector space V, as in
Exercise 2.2.24. (a) Prove that if wy,... W form a basis for W and z,...,z; a basis for
Z, then wy,...,w,,2;,...,2; form a basis for V. (b) Prove that dimW +dim Z = dim V.

{$ 2.4.27. Let V be a finite-dimensional vector space and W C V a subspace. Prove that the
quotient space, as defined in Exercise 2.2.29, has dimension dim(V/W) = dimV — dim W.

$ 2.4.28. Let fi(x),..., f, (x) be scalar functions. Suppose that every set of sample points

zy,...,z,, € R,forall finite m > 1, leads to linearly dependent sample vectors

f,...,f, € R™. Prove that f,(z),..., [, (z) are linearly dependent functions.

Hint: Given sample points z{,...,z,,, let Vm1 oz C R™ be the subspace consisting of all
vectors ¢ = (¢y,¢y,...,¢, )" such that ¢ f; + -+ ¢, f, = 0. First, show that one can
select sample points x;, s, T3, ... such that R" D Vi, 2 Vxl,:cg 2 --- . Then, apply Exercise

2.4.25 to conclude that le’_wn = {0}.

2.5 The Fundamental Matrix Subspaces

Let us now return to the general study of linear systems of equations, which we write in
our usual matrix form
Ax=b. (2.24)

As before, A is an m x n matrix, where m is the number of equations, so b € R™, and
n is the number of unknowns, i.e., the entries of x € R™. We already know how to solve
the system, at least when the coefficient matrix is not too large: just apply a variant of
Gaussian Elimination. Our goal now is to better understand the solution(s) and thereby
prepare ourselves for more sophisticated problems and solution techniques.

Kernel and Image

There are four important vector subspaces associated with any matrix. The first two are
defined as follows.

Definition 2.36. The image of an m x n matrix A is the subspace img A C R™ spanned
by its columns. The kernel of A is the subspace ker A C R™ consisting of all vectors that
are annihilated by A, so

kerA={zeR"| Az=0}CR"™ (2.25)

The image is also known as the column space or the range of the matrix. By definition,

T The latter term can be confusing, since some authors call all of R™ the range of the (function
defined by the) matrix, hence our preference to use image here, and, later, codomain to refer to
the space R™. On the other hand, the space R™ will be called the domain of the (function defined
by the) matrix.
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a vector b € R™ belongs to img A if can be written as a linear combination,

b=z,v,+ - +2,Vv

of the columns of A = (v, v, ... v, ). By our basic matrix multiplication formula (2.13),
the right-hand side of this equation equals the product A x of the matrix A with the column
vector X = (2, %q,..., 2, )T7 and hence b = Ax for some x € R™. Thus,

imgA={Ax| xeR" } CR™, (2.26)

and so a vector b lies in the image of A if and only if the linear system Ax = b has a
solution. The compatibility conditions for linear systems can thereby be re-interpreted as
the requirements for a vector to lie in the image of the coefficient matrix.

A common alternative name for the kernel is the null space. The kernel or null space of
A is the set of solutions z to the homogeneous system Az = 0. The proof that ker A is a
subspace requires us to verify the usual closure conditions: suppose that z, w € ker A, so
that Az = 0 = Aw. Then, by the compatibility of scalar and matrix multiplication, for
any scalars ¢, d,

A(cz+dw) =cAz+ dAw =0,

which implies that ¢z + dw € ker A. Closure of ker A can be re-expressed as the fol-
lowing important superposition principle for solutions to a homogeneous system of linear
equations.

Theorem 2.37. If z,,...,z, are individual solutions to the same homogeneous linear
system Az = 0, then so is every linear combination ¢; z; + - - + ¢, 2.

Warning. The set of solutions to an inhomogeneous linear system Ax = b with b # 0 is
not a subspace. Linear combinations of solutions are not, in general, solutions to the same
inhomogeneous system.

Superposition is the reason why linear systems are so much easier to solve, since one
needs to find only relatively few solutions in order to construct the general solution as a
linear combination. In Chapter 7 we shall see that superposition applies to completely
general linear systems, including linear differential equations, both ordinary and partial;
linear boundary value problems; linear integral equations; linear control systems; etc.

Example 2.38. Let us compute the kernel of the matrix

1 -2 0 3
A=12 -3 -1 -4
3 -5 -1 -1

Our task is to solve the homogeneous system Ax = 0, so we need only perform the
elementary row operations on A itself. The resulting row echelon form
1 -2 0 3
U=10 1 -1 -10
0 0 0 0
corresponds to the equations x — 2y + 3w = 0, y — z — 10w = 0. The free variables are
z,w, and the general solution is

T 22+ 17w 2 17
N . z+ 10w _ . 1 tw 10
z z 1 0
w w 0 1
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The result describes the most general vector in ker A, which is thus the two-dimensional
subspace of R* spanned by the linearly independent vectors (2,1, 1,0)T7 (17,10,0,1 )T.
This example is indicative of a general method for finding a basis for ker A, to be developed
in more detail below.

Once we know the kernel of the coefficient matrix A, i.e., the space of solutions to the
homogeneous system Az = 0, we are able to completely characterize the solutions to the
inhomogeneous linear system (2.24).

Theorem 2.39. The linear system Ax = b has a solution x* if and only if b lies in the
image of A. If this occurs, then x is a solution to the linear system if and only if

x =x" + 1z, (2.27)
where z € ker A is an element of the kernel of the coefficient matrix.

Proof: We already demonstrated the first part of the theorem. If Ax = b = Ax* are any
two solutions, then their difference z = x — x* satisfies

Az=Ax—x")=Ax— Ax*=b—-b =0,

and hence z is in the kernel of A. Therefore, x and x* are related by formula (2.27), which
proves the second part of the theorem. Q.E.D.

Therefore, to construct the most general solution to an inhomogeneous system, we need
only know one particular solution x*, along with the general solution z € ker A to the
corresponding homogeneous system. This construction should remind the reader of the
method for solving inhomogeneous linear ordinary differential equations. Indeed, both
linear algebraic systems and linear ordinary differential equations are but two particular
instances in the general theory of linear systems, to be developed in Chapter 7.

Example 2.40. Consider the system Ax = b, where

10 -1 xl b,
A= -1 1 -1, x=| 2z |, b={5b,|,
1 -2 3 T bs

where the right-hand side of the system will remain unspecified for the moment. Applying
our usual Gaussian Elimination procedure to the augmented matrix

1 0 -1 | b 10 -1 | b
-1 1 =1 | by, | leads to the row echelon form | 0 1 —2 | b,
1 =2 3| by 0 0 0 | byg+2by+b,

Therefore, the system has a solution if and only if the compatibility condition
by +2by +b5=0 (2.28)

holds. This equation serves to characterize the vectors b that belong to the image of the
matrix A, which is therefore a plane in R3.

To characterize the kernel of A, we take b = 0, and solve the homogeneous system
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Az = 0. The row echelon form corresponds to the reduced system
zy — 23 =0, 29 — 225 = 0.
The free variable is 2z, and the equations are solved to give
z = ¢, z9 = 2c, Z3 = ¢,

where ¢ is an arbitrary scalar. Thus, the general solution to the homogeneous system is
z = (c,2c,c)T =c (1,2,1)T, and so the kernel is the line in the direction of the
vector (1,2, 1)T.

If we take b = (3,—-2,1)" — which satisfies (2.28) and hence lies in the image of A —
then the general solution to the inhomogeneous system Ax = b is

T, =3+c¢, Ty =1+ 2c, T3 =C,

where ¢ is arbitrary. We can write the solution in the form (2.27), namely

3+c 3 1
x=[14+2c|=[1]+c|2]|=x"+2, (2.29)
c 0 1

where, as in (2.27), x* = (3,1,0)T plays the role of the particular solution, while
z=c(1,2,1)"

Finally, we remark that the particular solution is not uniquely defined — any individual
solution to the system will serve the purpose. Thus, in this example, we could choose, for
instance, x** = (-2,-9, -5 )T instead, corresponding to ¢ = —5 in the preceding formula
(2.29). The general solution can be expressed in the alternative form

is the general element of the kernel.

—2 1 1
x=x"4+z=|-9]|+¢c|2], where z==¢ | 2| €kerA,
-5 1 1

which agrees with (2.29) when we identify ¢ = ¢ + 5.

We can characterize the situations in which the linear system has a unique solution in
any of the following equivalent ways.

Proposition 2.41. If A is an m X n matrix, then the following conditions are equivalent:
(i) ker A = {0}, i.e., the homogeneous system Ax = 0 has the unique solution x = 0.
(i) rank A = n.

(iii) The linear system Ax = b has no free variables.

(iv) The system Ax = b has a unique solution for each b € img A.

Thus, while existence of a solution may depend upon the particularities of the right-
hand side b, uniqueness is universal: if for any one b, e.g., b = 0, the system admits a
unique solution, then all b € img A also admit unique solutions. Specializing even further
to square matrices, we can now characterize invertible matrices by looking at either their
kernels or their images.

Proposition 2.42. If A is a square n X n matrix, then the following four conditions are
equivalent: (i) A is nonsingular; (i7) rank A = n; (ii) ker A = {0}; (iv) img A =R".
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Exercises

2.5.1. Characterize the image and kernel of the following matrices:
1 2 3 1 -1 0 1
8 —4 1 -1 2 -1 0 1 -1
@ (g 3 o(5 5 1)@ (_i : é), @ |79 1
1 2 -3 1

2.5.2. For the following matrices, write the kernel as the span of a finite number of vectors.

Is the kernel a point, line, plane, or all of R®? (a) (2 —1 5), (b) (é _; _(1)>,

9 6 —4 1 2 5 2 -1 1 _:1; _é _g
() | ] _ (@) [0 4 8, (e) [ -1 1 =2, (f) | _ _
L=s 2 1 -6 —11 3 -1 1 2 46
3 0 -1
2.5.3.(a) Find the kernel and image of the coefficient matrix for the system x — 3y + 22z = qa,

22 — 6y + 2w = b, z — 3w = c. (b) Write down compatibility conditions on a,b, ¢ for a
solution to exist.

1 1 -1 0
2.5.4. Suppose x* = (2) is a particular solution to the equation (—1 0 1 ) x = b.
3 0 1 -1

(a) What is b? (b) Find the general solution.

2.5.5. Prove that the average of all the entries in each row of A is 0 if and only if
(1,1,...,1)7 € ker A.

2.5.6. True or false: If A is a square matrix, then ker A N img A = {0}.

2.5.7. Write the general solution to the following linear systems in the form (2.27). Clearly
identify the particular solution x* and the element z of the kernel. (a) z —y+32z =1,

o300 0 (3 D))

2 -1 1\ [z 0 ;:Z :%
(d) |4 -1 2){y|=| 1] (o) v = :
0o 1 3 o -3 6]\v 3
N -1 2 1
N AN N A= TN
-1 51 1|9 =([-3], (o) 7=
5 s 1 1)l 2 -2 5 2 -3||=z 4
s 1 1 -8 5)\w 5

2.5.8. Given a,r # 0, characterize the kernel and the image of the matrix

a ar cor ar™t
ar™ ar™tt . ar?nl ‘ )
Hint: See Exercise 1.8.17.
: : . a
arm=Dn gpn=Dntl g7 =1

¢ 2.5.9. Let the square matrix P be idempotent, meaning that P? = P. (a) Prove that
w € img P if and only if Pw = w. (b) Show that img P and ker P are complementary
subspaces, as defined in Exercise 2.2.24, so every v € R" can be uniquely written as
v =w + 2z where w € img P, z € ker P.

{ 2.5.10. Let A be an m x n matrix. Suppose that C = (g) is an (m + k) x n matrix whose

first m rows are the same as those of A. Prove that ker C' C ker A. Thus, appending more
rows cannot increase the size of a matrix’s kernel. Give an example in which ker C' # ker A.
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& 2.5.11. Let A be an m X n matrix. Suppose that C' = (A B) is an m x (n + k) matrix whose
first n columns are the same as those of A. Prove that img C' O img A. Thus, appending

more columns cannot decrease the size of a matrix’s image. Give an example in which
img C' # img A.

The Superposition Principle

The principle of superposition lies at the heart of linearity. For homogeneous systems,
superposition allows one to generate new solutions by combining known solutions. For
inhomogeneous systems, superposition combines the solutions corresponding to different
inhomogeneities.

Suppose we know particular solutions x7 and x} to two inhomogeneous linear systems
Ax =by, Ax = by,
that have the same coefficient matrix A. Consider the system
Ax =c¢; by +cyb,,

whose right-hand side is a linear combination, or superposition, of the previous two. Then
a particular solution to the combined system is given by the same superposition of the
previous solutions:
X" = ¢ X] + X5,
The proof is easy:
AX* = Aey X] + ¢ox5) = ¢ AX] + ¢, AX; = ¢, by + ¢y b,

In physical applications, the inhomogeneities b,, b, typically represent external forces,
and the solutions x},x} represent the respective responses of the physical apparatus. The
linear superposition principle says that if we know how the system responds to the indi-
vidual forces, we immediately know its response to any combination thereof. The precise
details of the system are irrelevant — all that is required is its linearity.

Example 2.43. For example, the system

4 1 0\ _ [ fi

1 4 xy )\ [y
models the mechanical response of a pair of masses connected by springs, subject to external
forcing. The solution x = (z, x4 )T represents the displacements of the masses, while the
entries of the right-hand side £ = ( f}, f, )T are the applied forces. (Details can be found
) . . 4 1\T
in Chapter 6.) We can directly determine the response of the system x} = ( 1—5,T— is ) to
—L, &) toa unit

force e, = (0,1 )T on the second mass. Superposition gives the response of the system to
a general force, since we can write

f= <§;> = fie;+ fae, :f1((1)> +f2<(1)>’
and hence

4 1 4 1
_ * *x 15 15 _ ﬁfl_ﬁf2
X—f1x1+f2X2—f1<_i>+f2< i>_<_if+if>'
15 15 15J1 T 15 /2

a unit force e; = (1,0 )T on the first mass, and the response x5 = (
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The preceding construction is easily extended to several inhomogeneities, and the result
is the general Superposition Principle for inhomogeneous linear systems.

Theorem 2.44. Suppose that xj,...,x are particular solutions to each of the inhomo-
geneous linear systems

Ax = by, Ax =b,, Ax =b,, (2.30)
all having the same coefficient matrix, and where by, ..., b, € img A. Then, for any choice
of scalars cq, ..., ¢, a particular solution to the combined system

Ax=c¢b;+ - +¢,by (2.31)

is the corresponding superposition
X =c¢X)+ - +opXp (2.32)
of individual solutions. The general solution to (2.31) is
X=X"4+z=c¢; X1+ - +c X} +2, (2.33)

where z € ker A is the general solution to the homogeneous system Az = 0.

For instance, if we know particular solutions x7,...,x}, to
Ax=e,, for each i=1,...,m, (2.34)
where e, ..., e, are the standard basis vectors of R™, then we can reconstruct a particular

solution x* to the general linear system Ax = b by first writing
b=be + --- +0,¢€,
as a linear combination of the basis vectors, and then using superposition to form

X =bx{+ - +0b,x),. (2.35)

However, for linear algebraic systems, the practical value of this insight is rather limited.
Indeed, in the case that A is square and nonsingular, the superposition formula (2.35) is
merely a reformulation of the method of computing the inverse of the matrix. Indeed, the
vectors x},...,x that satisfy (2.34) are just the columns of A~! (why?), while (2.35) is
precisely the solution formula x* = A~'b that we abandoned in practical computations,
in favor of the more efficient Gaussian Elimination process. Nevertheless, this idea turns
out to have important implications in more general situations, such as linear differential
equations and boundary value problems.

Exercises

2.5.12. Find the solution x} to the system (7;) 7421) <z> = <(1)) , and the solution x3 to
1
-3

1 2 z\ _ (0 . 2 z) _ (1 .
<_3 _4) (y) = <1> Express the solution to ( _4> (y) = <4> as a linear

combination of x] and x5.
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1 2 -1 5 1
25.13. Let A= |2 5 —1|. Giventhat x] = | —1 | solves Ax = b; = | 3 | and
1 3 2 2 6

—11 0 2
X5 = ( 5) solves Ax = by = (4),ﬁndasolution to Ax =2by + by = (10).
—1 2 14

1 -3
2.5.14.(a) Show that x} = (1) and x5 = ( 3) are particular solutions to the system
0 -2

2 -1 -5 1
1 =4 —6 |x=| -3 |. (b) Find the general solution.
3 2 —4 5

2.5.15. A physical apparatus moves 2 meters under a force of 4 newtons. Assuming linearity,
how far will it move under a force of 10 newtons?

2.5.16. Applying a unit external force in the horizontal direction moves a mass 3 units to the
right, while applying a unit force in the vertical direction moves it up 2 units. Assuming

linearity, where will the mass move under the applied force f = (2, —3 )T?

2.5.17. Suppose x’{ and x§ are both solutions to Ax = b. List all linear combinations of x’f

and x5 that solve the system.
{ 2.5.18. Let A be a nonsingular m x m matrix. (a) Explain in detail why the solutions
X7, ..., X, to the systems (2.34) are the columns of the matrix inverse AL
01 2
(b) Ilustrate your argument in the case A = (—1 1 3) .
1 0 1

2.5.19. True or false: If x’f solves Ax = ¢, and x§ solves Bx = d, then x* = x’{ + x§ solves
(A+ B)x=c+d.

¢ 2.5.20. Under what conditions on the coefficient matrix A will the systems in (2.34) all have a
solution?

Adjoint Systems, Cokernel, and Coimage

A linear system of m equations in n unknowns is based on an m x n coefficient matrix A.
The transposed matrix AT will be of size n x m, and forms the coefficient matrix of an
associated linear system, consisting of n equations in m unknowns.

Definition 2.45. The adjoint’ to a linear system A x = b of m equations in n unknowns
is the linear system

ATy =f (2.36)

consisting of n equations in m unknowns y € R™ with right-hand side f € R™.

Example 2.46. Consider the linear system
Ty — 3Ty —Txg+ 92, = by,
Ty +5xq — 32, = by, (2.37)
Ty — 2Ty — 234+ 62,4 = by,

f Warning. Some texts misuse the term “adjoint” to describe the adjugate or cofactor matrix,
[80]. The constructions are completely unrelated, and the adjugate will play no role in this book.
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of three equations in four unknowns. Its coefficient matrix

s oo
A=10 1 5 -3 has transpose AT =

1 -2 -2 6 T8 2

9 -3 6

Thus, the adjoint system to (2.37) is the following system of four equations in three un-

knowns:
Yy + Ys = I1,

=3y +ys, — 2y; = fa
=Ty, +5yy —2y3 = f?,v
9y, — 3y, +6y3 = [y

(2.38)

On the surface, there appears to be no direct connection between the solutions to a
linear system and its adjoint. Nevertheless, as we shall soon see (and then in even greater
depth in Sections 4.4 and 8.7), the two are linked in a number of remarkable, but subtle
ways. As a first step in this direction, we use the adjoint system to define the remaining
two fundamental subspaces associated with a coefficient matrix A.

Definition 2.47. The coimage of an m x n matrix A is the image of its transpose,
coimg A = img AT = { ATy ‘ y ER™} CR™ (2.39)
The cokernel of A is the kernel of its transpose,
coker A = ker AT = { w e R™ | ATw =0 } CcR™, (2.40)
that is, the set of solutions to the homogeneous adjoint system.

The coimage coincides with the subspace of R™ spanned by the rows’ of A, and is thus
often referred to as the row space. As a direct consequence of Theorem 2.39, the adjoint
system ATy = f has a solution if and only if f € img A7 = coimg A. The cokernel is also
sometimes called the left null space of A, since it can be identified with the set of all row
vectors r satisfying r 4 = 07, where 07 is the row vector with m zero entries. Indeed,
we can identify r = w’ and so, taking the transpose of the preceding equation, deduce
ATw = (WwF'A)T = (r A)T =0, and so w = v’ € coker A.

Example 2.48. To solve the linear system (2.37) just presented, we perform Gaussian
1 -3 =7 9| Y

Elimination on the augmented matrix { 0 1 5 —3 | by |, reducing it to the row
1 -2 =2 6 | by

1 -3 =7 9| b
echelon form | 0 1 5 =3 | by . Thus, the system has a solution if and
0 0 0 0| byg—by—10
only if
—b; — by, +b5=0,

t Or, more precisely, the column vectors obtained by transposing the rows.
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which is required in order that b € img A. For such vectors, the general solution is

by —bwy+3wy | _ b, -5 3
o = 0 + x4 1 + xy 0
Ty 0 0 1

In the second expression, the first vector represents a particular solution, while the two
remaining terms constitute the general element of ker A.

The solution to the adjoint system (2.38) is also obtained by Gaussian Elimination,

1 0 11 £

-3 1 =21 fy

=7 5 =2 | f

9 -3 61 f,

starting with its augmented matrix The resulting row echelon

1 0 1 fi
. 0 1 1| fb+3f . .
form is 2 ! . Thus, there are two consistency constraints re-
00 0| fa—5f—8f, Y

0 0 01 f,+3f,
quired for a solution to the adjoint system:
_8f1_5f2+f3:0, 3f2+f420

These are the conditions required for the right-hand side to belong to the coimage:
f € img AT = coimg A. If these conditions are satisfied, the adjoint system has the
following general solution depending on the single free variable ys:

f1_y3 f1 -1
y=|3fitfo—ys | =|3fi+t[fs] tys| -1
Y3 0 1

In the latter formula, the first term represents a particular solution, while the second is
the general element of the cokernel ker A7 = coker A.

The Fundamental Theorem of Linear Algebra

The four fundamental subspaces associated with an m x n matrix A, then, are its image,
coimage, kernel, and cokernel. The image and cokernel are subspaces of R", while the
kernel and coimage are subspaces of R™. The Fundamental Theorem of Linear Algebrat
states that their dimensions are determined by the rank (and size) of the matrix.

Theorem 2.49. Let A be an m x n matrix, and let r be its rank. Then

dim coimg A = dim img A = rank A = rank AT =r, (2.41)
dimker A =n —r, dim coker A = m — r. .

Thus, the rank of a matrix, i.e., the number of pivots, indicates the number of linearly
independent columns, which, remarkably, is always the same as the number of linearly
independent rows. A matrix and its transpose are guaranteed to have the same rank, i.e.,

T Not to be confused with the Fundamental Theorem of Algebra, which states that every
(nonconstant) polynomial has a complex root; see [26].
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the same number of pivots, despite the fact that their row echelon forms are quite different,
and are almost never transposes of each other. Theorem 2.49 also establishes our earlier
contention that the rank of a matrix is an intrinsic quantity, since it equals the common
dimension of its image and coimage, and so does not depend on which specific elementary
row operations are employed during the reduction process, nor on the final row echelon
form.

Let us turn to the proof of the Fundamental Theorem 2.49. Since the dimension of a
subspace is prescribed by the number of vectors in any basis, we need to relate bases of
the fundamental subspaces to the rank of the matrix. Before trying to digest the general
argument, it is better first to understand how to construct the required bases in a particular
example. Consider the matrix

2 -1 1 2 2 -1 1 2
A=|-8 4 —6 —4 ). Itsrowechelonform U=[0 0 -2 4 (2.42)
4 =2 3 2 0 0 0 0

is obtained in the usual manner. There are two pivots, and thus the rank of A is r = 2.

Kernel: The general solution to the homogeneous system Ax = 0 can be expressed as
a linear combination of n — r linearly independent vectors, whose coefficients are the free
variables for the system corresponding to the n — r columns without pivots. In fact, these
vectors form a basis for the kernel, which thus has dimension n — 7.

In our example, the pivots are in columns 1 and 3, and so the free variables are x,,x,.
Applying Back Substitution to the reduced homogeneous system Ux = 0, we obtain the
general solution

%xg —2zy % -2
X = 2 =z, 1 +x, 0 (2.43)
22, 0 2
Ty 0
written as a linear combination of the vectors
z,= (3% 1,0 0), z,= (-2, 0, 2, 1)

We claim that z,, z, form a basis of ker A. By construction, they span the kernel, and linear
independence follows easily, since the only way in which the linear combination (2.43) could
vanish is if both free variables vanish: z, =z, = 0.

Coimage: The coimage is the subspace of R™ spanned by the rows of A. As we prove
below, applying an elementary row operation to a matrix does not alter its coimage. Since
the row echelon form U is obtained from A by a sequence of elementary row operations, we
conclude that coimg A = coimg U. Moreover, the row echelon structure implies that the
r nonzero rows of U are necessarily linearly independent, and hence form a basis of both
coimg U and coimg A, which therefore have dimension r» = rank A. In our example, then,
a basis for coimg A consists of the vectors

s, =(2, -1, 1, 2)7, s, = (0, 0, =2, 4)",

f Or, more correctly, the transposes of the rows, since the elements of R™ are supposed to be
column vectors.
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coming from the nonzero rows of U. The reader can easily check their linear independence,
as well as the fact that every row of A lies in their span.

Image: There are two methods for computing a basis of the image, or column space.
The first proves that it has dimension equal to the rank. This has the important, and
remarkable consequence that the space spanned by the rows of a matrix and the space
spanned by its columns always have the same dimension, even though they are usually
different subspaces of different vector spaces.

Now, the row echelon structure implies that the columns of U that contain the pivots
form a basis for its image, i.e., img U. In our example, these are its first and third columns,
and you can check that they are linearly independent and span the full column space. But
the image of A is not the same as the image of U, and so, unlike the coimage, we cannot
directly use a basis for img U as a basis for img A. However, the linear dependencies among
the columns of A and U are the same, and this implies that the r columns of A that end
up containing the pivots will form a basis for img A. In our example (2.42), the pivots lie
in the first and third columns of U, and hence the first and third columns of A; namely,

2 1
vi=1| -8, ve=| —6 |,
4 3

form a basis for img A. This means that every column of A can be written uniquely as a
linear combination of its first and third columns. Again, skeptics may wish to check this.

An alternative method to find a basis for the image is to recall that img A = coimg AT,
and hence we can employ the previous algorithm to compute coimg A”. In our example,
applying Gaussian Elimination to

2 =8 4 2 -8 4
AT = _1 _é _g leads to the row echelon form U = 8 _g é (2.44)
2 —4 2 0 0 0

Note that the row echelon form of AT is not the transpose of the row echelon form of A.
However, they do have the same number of pivots, since, as we now know, both A and AT
have the same rank, namely 2. The two nonzero rows of U (again transposed to be column
vectors) form a basis for coimg AT, and therefore

2 0
yi=1|-38], yo=1\|—-2],
4 1

forms an alternative basis for img A.

Cokernel: Finally, to determine a basis for the cokernel, we apply the algorithm for
finding a basis for ker AT = coker A. Since the ranks of A and AT coincide, there are
now m — r free variables, which is the same as the dimension of ker A”. In our particular
example, using the reduced form (2.44), the only free variable is y,, and the general solution

to the homogeneous adjoint system ATy = 0 is

[ N )
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We conclude that coker A is one-dimensional, with basis (07 %7 1 )T
Summarizing, given an m X n matrix A with row echelon form U, to find a basis for

e img A: choose the r columns of A in which the pivots appear in U;

e ker A: write the general solution to Ax = 0 as a linear combination of the n — r basis
vectors whose coefficients are the free variables;

e coimg A: choose the r nonzero rows of U;

e coker A: write the general solution to the adjoint system ATy = 0 as a linear
combination of the m — r basis vectors whose coefficients are the free vari-
ables. (An alternative method — one that does not require solving the adjoint
system — can be found on page 223.)

Let us conclude this section by justifying these constructions for general matrices, and
thereby complete the proof of the Fundamental Theorem 2.49.

Kernel: If A has rank r, then the general element of the kernel, i.e., solution to the
homogeneous system Ax = 0, can be written as a linear combination of n — r vectors
whose coefficients are the free variables, and hence these vectors span ker A. Moreover,
the only combination that yields the zero solution x = 0 is when all the free variables are
zero, since any nonzero value for a free variable, say x; # 0, gives a solution x # 0 whose
ith entry (at least) is nonzero. Thus, the only linear combination of the n — r kernel basis
vectors that sums to 0 is the trivial one, which implies their linear independence.

Coimage: We need to prove that elementary row operations do not change the coimage.
To see this for row operations of the first type, suppose, for instance, that A is obtained
by adding b times the first row of A to the second row. If ry,r,,r5,...,r,, are the rows of

A, then the rows of A are r),Fy = ry + brj,ry,...,1,,. If

V=cTr +cry+c3rg3+ -0 +c, 1,
is any vector belonging to coimg A, then
V=0 +cyTy+c3rs+ - +c,T,,, where ¢, =c¢; —bey,

is also a linear combination of the rows of the new matrix, and hence lies in coimg A.
The converse is also valid — v € coimg A implies v € coimg A — and we conclude that
elementary row operations of type #1 do not change coimg A. The proofs for the other
two types of elementary row operations are even easier, and are left to the reader.

The basis for coimg A will be the first » nonzero pivot rows s,,...,s, of U. Since the
other rows, if any, are all 0, the pivot rows clearly span coimg U = coimg A. To prove their
linear independence, suppose

s+ - +e¢.8.=0. (2.45)

Let uq; # 0 be the first pivot. Since all entries of U lying below the pivot are zero, the
Eth entry of (2.45) is ¢q uy;, = 0, which implies that ¢, = 0. Next, suppose u,; # 0 is the
second pivot. Again, using the row echelon structure of U, the It entry of (2.45) is found
to be ¢ uy; + cyuy; = 0, and so ¢y, = 0, since we already know ¢; = 0. Continuing in this
manner, we deduce that only the trivial linear combination ¢; = --- = ¢, = 0 will satisfy
(2.45), proving linear independence. Thus, s,...,s, form a basis for coimg U = coimg A,
which therefore has dimension r = rank A.

Image: In general, a vector b € img A if and only if it can be written as a linear
combination of the columns: b = A x. But, as we know, the general solution to the linear
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system A x = b is expressed in terms of the free and basic variables; in particular, we are
allowed to set all the free variables to zero, and so end up writing b in terms of the basic
variables alone. This effectively expresses b as a linear combination of the pivot columns
of A only, which proves that they span img A. To prove their linear independence, suppose
some linear combination of the pivot columns adds up to 0. Interpreting the coefficients
as basic variables, this would correspond to a vector x, all of whose free variables are
zero, satisfying Ax = 0. But our solution to this homogeneous system expresses the basic
variables as combinations of the free variables, which, if the latter are all zero, are also zero
when the right-hand sides all vanish. This shows that, under these assumptions, x = 0,
and hence the pivot columns are linearly independent.

Cokernel: By the preceding arguments, rank A = rank A” = 7, and hence the general
element of coker A = ker AT can be written as a linear combination of m — r basis vectors
whose coefficients are the free variables in the homogeneous adjoint system AZy = 0.
Linear independence of the basis elements follows as in the case of the kernel.

Exercises

2.5.21. For each of the following matrices find bases for the (i) image, (i7) coimage,
(i17) kernel, and (iv) cokernel.

1 -3 2 2 1
L3 00 -8 11 21 0 3 -6 0 —2
(a) (2 76>, ) [1 2 =1, (@ [|[1 0 -1 3|, ]2 -3 -2 4 0
2 4 6 2 3 70 3 -3 -6 6 3

1 0 -4 2 3

-1 2 0 -3 5
2.5.22. Find a set of columns of the matrix ( 2 —4 1 1 —4) that form a basis for its
-3 6 2 0 8

image. Then express each column as a linear combination of the basis columns.

2.5.23. For each of the following matrices A: (a) Determine the rank and the dimensions of the
four fundamental subspaces. (b) Find bases for both the kernel and cokernel. (c¢) Find
explicit conditions on vectors b that guarantee that the system Ax = b has a solution.

(d) Write down a specific nonzero vector b that satisfies your conditions, and then find all
possible solutions x.

o (5 5) (83 3 a (é %) (iv) (z ;21 7:1)

2 5 7 1 2 3 4 2 4 0 -6 0
(v) 6 13 19 (vi) 3 2 4 1 (vid) 1 2 3 15 0
3 8 11 ) 1 -2 2 7 3 6 —1 15 5
1 2 3 3 6 5 -2 -3 —6 2 21 -6

2.5.24. Find the dimension of and a basis for the subspace spanned by the following sets of
vectors. Hint: First identify the subspace with the image of a certain matrix.

1 2 1 2 -3 1 1
(a) ( 2)7(2)7 (b) ( 1)7( 2)7(_3)7 (C) )
-1 0 -1 -2 3

0
1
0
1 0\ /-3 1 2 i j
0 1| [ -4 [ -3 1
2 )
3

11! 8 |’ -6 |’ (8)
6 7 9

N~  — OO
|
— OB WO O NN
|
=N =W WWwN -
ON WO

NWH—OW
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2.5.25. Show that the set of all vectors v = (a —3b,a+2c+4d,b+3c—d,c— d)T, where
a,b, c,d are real numbers, forms a subspace of ]R4, and find its dimension.

2.5.26. Find a basis of the solution space of the following homogeneous linear systems.

T — Ty — 223+ 4z, =0,

Ty —2x3 =0, 2x1 + 19 — 3253+ 134 =0,

b 23y + 2y — 1y =0,
(a) z9+x, =0. (b) 2@, — Ty — g — x4 = 0. (c) Ty T Ty — Ty
-2z, +2x45 — 22, =0.
1 -3 0
2.5.27. Find bases for the image and coimage of 2 —6 4 |. Make sure they have the
-3 9 1

same number of elements. Then write each row and column as a linear combination of the
appropriate basis vectors.

1 2 -1
2.5.28. Find bases for the image of (2) _i _2 using both of the indicated methods.
1 5 —4

Demonstrate that they are indeed both bases for the same subspace by showing how to
write each basis in terms of the other.

2.5.29. Show that v; = (1,2,0,—1)" vy, = (=3,1,1,—1)" | v4 = (2,0,—4,3)" and
wy = (3,2,—4,2 )T JWy = (2,3,-7, 4)T yws = (0,3,-3,1 )T are two bases for the same
three-dimensional subspace V' C R™.

2.5.30.(a) Prove that if A is a symmetric matrix, then ker A = coker A and img A = coimg A.
(b) Use this observation to produce bases for the four fundamental subspaces associated

1 2 0
with A = (2 6 2) . (c) Is the converse to part (a) true?
0 2 2

2.5.31.(a) Write down a matrix of rank r whose first r rows do not form a basis for its row
space. (b) Can you find an example that can be reduced to row echelon form without any
row interchanges?

2.5.32. Let A be a 4 x 4 matrix and let U be its row echelon form. (a) Suppose columns 1, 2,
4 of U form a basis for its image. Do columns 1, 2, 4 of A form a basis for its image? If so,
explain why; if not, construct a counterexample. (b) Suppose rows 1, 2, 3 of U form a basis
for its coimage. Do rows 1, 2, 3 of A form a basis for its coimage? If so, explain why; if not,
construct a counterexample. (¢) Suppose you find a basis for ker U. Is it also a basis for
ker A? (d) Suppose you find a basis for coker U. Is it also a basis for coker A?

2.5.33. Can you devise a nonzero matrix whose row echelon form is the same as the row
echelon form of its transpose?

{ 2.5.34. Explain why the elementary row operations of types #2 and #3 do not change the
coimage of a matrix.

2.5.35. Let A be an m x n matrix. Prove that img A = R™ if and only if rank A = m.
2.5.36. Prove or give a counterexample: If U is the row echelon form of A, then img U = img A.

& 2.5.37.(a) Devise an alternative method for finding a basis of the coimage of a matrix.
Hint: Look at the two methods for finding a basis for the image. (b) Use your method
1 3 =5 2
to find a basis for the coimage of (2 -1 1 4) . Is it the same basis as found
4 5 -9 2
by the method in the text?

¢ 2.5.38. Prove that ker A C ker A%2. More generally, prove ker A C ker B A for every compatible
matrix B.
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$ 2.5.39. Prove that img A D img A2, More generally, prove img A D img (A B) for every
compatible matrix B.

2.5.40. Suppose A is an m X n matrix, and B and C' are nonsingular matrices of sizes m x m
and n X n, respectively. Prove that rank A = rank BA = rank AC = rank BAC.

2.5.41. True or false: If ker A = ker B, then rank A = rank B.

{$ 2.5.42. Let A and B be matrices of respective sizes m x n and n X p.
(a) Prove that dimker(AB) < dimker A 4 dimker B.
(b) Prove the Sylvester Inequalities rank A+rank B—n < rank(AB) < min{ rank A, rank B }

{ 2.5.43. Suppose A is a nonsingular n X n matrix. (a) Prove that every n x (n + k) matrix of
the form (A B), where B has size n X k, has rank n. (b) Prove that every (n + k) X n

matrix of the form (é)7 where C' has size k x n, has rank n.

& 2.5.44. Let A be an m X n matrix of rank . Suppose vy, ...,v,, are a basis for R” such that
Vyiqs---,V, form a basis for ker A. Prove that wy = Avy,...,w, = Av, form a basis
for img A.

{ 2.5.45.(a) Suppose A, B are m X n matrices such that ker A = ker B. Prove that there is a
nonsingular m x m matrix M such that M A = B. Hint: Use Exercise 2.5.44. (b) Use this
to conclude that if Ax = b and B x = ¢ have the same solutions then they are equivalent
linear systems, i.e., one can be obtained from the other by a sequence of elementary row
operations.

{ 2.5.46.(a) Let A be an m X n matrix and let V' be a subspace of R™. Show that W = AV =
{Av|v € V} forms a subspace of img A. (b) If dim V' = k, show that dim W < min{k,r},
where r = rank A. Give an example in which dim(AV) < dim V. Hint: Use Exercise 2.4.25.

{ 2.5.47.(a) Show that an m X n matrix has a left inverse if and only if it has rank n.
Hint: Use Exercise 2.5.46. (b) Show that it has a right inverse if and only if it has rank m.
(¢) Conclude that only nonsingular square matrices have both left and right inverses.

2.6 Graphs and Digraphs

We now present an intriguing application of linear algebra to graph theory. A graph consists
of a finite number of points, called wvertices, and finitely many lines or curves connecting
them, called edges. Each edge connects exactly two vertices, which are its endpoints. To
avoid technicalities, we will always assume that the graph is simple, which means that
every edge connects two distinct vertices, so no edge forms a loop that connects a vertex
to itself, and, moreover, two distinct vertices are connected by at most one edge. Some
examples of graphs appear in Figure 2.6; the vertices are the black dots and the edges are
the lines connecting them.

Graphs arise in a multitude of applications. A particular case that will be considered in
depth is electrical networks, where the edges represent wires, and the vertices represent the
nodes where the wires are connected. Another example is the framework for a building —
the edges represent the beams, and the vertices the joints where the beams are connected.
In each case, the graph encodes the topology — meaning interconnectedness — of the
system, but not its geometry — lengths of edges, angles, etc.

In a planar representation of a graph, the edges are allowed to cross over each other
at non-nodal points without meeting — think of a network where the (insulated) wires lie
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5

Figure 2.6. Three Different Graphs.

gy

Figure 2.7.  Three Versions of the Same Graph.

N

N4

on top of each other, but do not interconnect. Thus, the first graph in Figure 2.6 has 5
vertices and 8 edges; the second has 4 vertices and 6 edges — the two central edges do not
meet; the final graph has 5 vertices and 10 edges.

Two graphs are considered to be the same if there is a one-to-one correspondence be-
tween their edges and their vertices, so that matched edges connect matched vertices. In
an electrical network, moving the nodes and wires around without cutting or rejoining will
have no effect on the underlying graph. Consequently, there are many ways to draw a given
graph; three representations of one and the same graph appear in Figure 2.7.

A path in a graph is an ordered list of distinct edges e, . .., e, connecting (not necessarily
distinct) vertices vy,..., v, so that edge e; connects vertex v; to v;, . For instance, in
the graph in Figure 2.8, one path starts at vertex 1, then goes in order along the edges
labeled as 1,4, 3, 2, successively passing through the vertices 1,2, 4,1, 3. Observe that while
an edge cannot be repeated in a path, a vertex may be. A graph is connected if you can
get from any vertex to any other vertex by a path, which is the most important case for
applications. We note that every graph can be decomposed into a disconnected collection
of connected subgraphs.

A circuit is a path that ends up where it began, i.e., v, ,; = v,. For example, the circuit
in Figure 2.8 consisting of edges 1,4,5, 2 starts at vertex 1, then goes to vertices 2,4, 3 in
order, and finally returns to vertex 1. In a closed circuit, the choice of starting vertex is
not important, and we identify circuits that go around the edges in the same order. Thus,
for example, the edges 4, 5,2, 1 represent the same circuit as above.
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Figure 2.8. A Simple Graph.

Figure 2.9.  Digraphs.

In electrical circuits, one is interested in measuring currents and voltage drops along the
wires in the network represented by the graph. Both of these quantities have a direction,
and therefore we need to specify an orientation on each edge in order to quantify how the
current moves along the wire. The orientation will be fixed by specifying the vertex the
edge “starts” at, and the vertex it “ends” at. Once we assign a direction to an edge, a
current along that wire will be positive if it moves in the same direction, i.e., goes from
the starting vertex to the ending one, and negative if it moves in the opposite direction.
The direction of the edge does not dictate the direction of the current — it just fixes what
directions positive and negative values of current represent. A graph with directed edges
is known as a directed graph, or digraph for short. The edge directions are represented by
arrows; examples of digraphs can be seen in Figure 2.9. Again, the underlying graph is
always assumed to be simple. For example, at any instant in time, the internet can be
viewed as a gigantic digraph, in which each vertex represents a web page, and each edge
represents an existing link from one page to another.

Consider a digraph D consisting of n vertices connected by m edges. The incidence
matriz associated with D is an m x n matrix A whose rows are indexed by the edges and
whose columns are indexed by the vertices. If edge k starts at vertex i and ends at vertex
j, then row k of the incidence matrix will have 4+1 in its (k,4) entry and —1 in its (k, j)
entry; all other entries in the row are zero. Thus, our convention is that + 1 represents the
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Figure 2.10. A Simple Digraph.

outgoing vertex at which the edge starts and — 1 the incoming vertex at which it ends.
A simple example is the digraph in Figure 2.10, which consists of five edges joined at
four different vertices. Its 5 x 4 incidence matrix is

1 -1 0 0
1 0 -1 0

A=|1 0 o0 -1]. (2.46)
0 1 0 -1
0o 0 1 -1

Thus the first row of A tells us that the first edge starts at vertex 1 and ends at vertex
2. Similarly, row 2 says that the second edge goes from vertex 1 to vertex 3, and so on.
Clearly, one can completely reconstruct any digraph from its incidence matrix.

Example 2.50. The matrix 1 -1 0 0 0
-1 0 1 0 0
0 -1 1 0 0
A= 0 1 0 -1 0 (2.47)
0 0 -1 1 0
0 0 1 0 -1
0 0 0 1 -1

qualifies as an incidence matrix of a simple graph because each row contains a single +1,
a single —1, and the other entries are 0; moreover, to ensure simplicity, no two rows are
identical or —1 times each other. Let us construct the digraph corresponding to A. Since
A has five columns, there are five vertices in the digraph, which we label by the numbers
1,2,3,4,5. Since it has seven rows, there are 7 edges. The first row has its +1 in column
1 and its —1 in column 2, and so the first edge goes from vertex 1 to vertex 2. Similarly,
the second edge corresponds to the second row of A and so goes from vertex 3 to vertex 1.
The third row of A indicates an edge from vertex 3 to vertex 2; and so on. In this manner,
we construct the digraph drawn in Figure 2.11.

The incidence matrix serves to encode important geometric information about the di-
graph it represents. In particular, its kernel and cokernel have topological significance.
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4 @ 5

Figure 2.11.  Another Digraph.

For example, the kernel of the incidence matrix (2.47) is spanned by the single vector
z=1(1,1,1,1,1 )T, and represents the fact that the sum of the entries in any given row of
A is zero. This observation holds in general for connected digraphs.

Proposition 2.51. If A is the incidence matrix for a connected digraph, then ker A is

one-dimensional, with basis z = (1,1,...,1 )T .

Proof: If edge k connects vertex i to vertex j, then the kt? equation in Az = 0 is z;—2; =0,
or, equivalently, z; = z;. The same equality holds, by a simple induction, if the vertices 1
and j are connected by a path. Therefore, if D is connected, then all the entries of z are
equal, and the result follows. Q.E.D.

Remark. In general, dim ker A equals the number of connected components in the digraph
D. See Exercise 2.6.12.
Applying the Fundamental Theorem 2.49, we immediately deduce the following;:

Corollary 2.52. If A is the incidence matrix for a connected digraph with n vertices, then
rank A =n — 1.

Next, let us look at the cokernel of an incidence matrix. Consider the particular example
(2.46) corresponding to the digraph in Figure 2.10. We need to compute the kernel of the
transposed incidence matrix

1 1 1 0 0
-1 0 0 1 0

A=l 00 0 (2.48)
0 0 -1 -1 -1

Solving the homogeneous system A’y = 0 by Gaussian Elimination, we discover that
coker A = ker AT is spanned by the two vectors

yi=(1, 0, =1, 1, 0)", yo=1(0, 1, =1, 0, 1)".

Each of these vectors represents a circuit in the digraph. Keep in mind that their entries
are indexed by the edges, so a nonzero entry indicates the direction to traverse the corre-
sponding edge. For example, y, corresponds to the circuit that starts out along edge 1,
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then goes along edge 4 and finishes by going along edge 3 in the reverse direction, which is
indicated by the minus sign in its third entry. Similarly, y, represents the circuit consisting
of edge 2, followed by edge 5, and then edge 3, backwards. The fact that y, and y, are
linearly independent vectors says that the two circuits are “independent”.

The general element of coker A is a linear combination ¢, y; + ¢, y,. Certain values of
the constants lead to other types of circuits; for example, —y, represents the same circuit
as y,, but traversed in the opposite direction. Another example is

yl_y2:(17 _17 07 17 _1)T7

which represents the square circuit going around the outside of the digraph along edges
1,4,5,2, the fifth and second edges taken in the reverse direction. We can view this circuit
as a combination of the two triangular circuits; when we add them together, the middle
edge 3 is traversed once in each direction, which effectively “cancels” its contribution. (A
similar cancellation occurs in the calculus of line integrals, [2, 78].) Other combinations
represent “virtual” circuits; for instance, one can “interpret” 2y, — % ¥, as two times around
the first triangular circuit plus one-half of the other triangular circuit, taken in the reverse
direction — whatever that might mean.
Let us summarize the preceding discussion.

Theorem 2.53. Each circuit in a digraph D is represented by a vector in the cokernel of
its incidence matrix A, whose entries are + 1 if the edge is traversed in the correct direction,
—1 if in the opposite direction, and 0 if the edge is not in the circuit. The dimension of
the cokernel of A equals the number of independent circuits in D.

Remark. A full proof that the cokernel of the incidence matrix of a general digraph has
a basis consisting entirely of independent circuits requires a more in depth analysis of the
properties of graphs than we can provide in this abbreviated treatment. Full details can
be found in [6; §IL.3].

The preceding two theorems have an important and remarkable consequence. Suppose
D is a connected digraph with m edges and n vertices and A its m X n incidence matrix.
Corollary 2.52 implies that A has rank r = n — 1 = n — dimker A. On the other hand,
Theorem 2.53 tells us that [ = dim coker A equals the number of independent circuits in
D. The Fundamental Theorem 2.49 says that r = m — [. Equating these two formulas for
the rank, we obtain r =n—1=m—1[, or n+1 = m+ 1. This celebrated result is known as
FEuler’s formula for graphs, first discovered by the extraordinarily prolific and influential
eighteenth-century Swiss mathematician Leonhard Eulerf.

Theorem 2.54. If G is a connected graph, then

# vertices + # independent circuits = # edges + 1. (2.49)

Remark. If the graph is planar, meaning that it can be graphed in the plane without
any edges crossing over each other, then the number of independent circuits is equal to the
number of “holes”, i.e., the number of distinct polygonal regions bounded by the edges of
the graph. For example, the pentagonal digraph in Figure 2.11 bounds three triangles, and
so has three independent circuits.

' Pronounced “Oiler”. Euler spent most of his career in Russia and Germany.
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Figure 2.12. A Cubical Digraph.

Example 2.55. Consider the graph corresponding to the edges of a cube, as illustrated

in Figure 2.12, where the second figure represents the same graph squashed down onto a
plane. The graph has 8 vertices and 12 edges. Euler’s formula (3.92) tells us that there
are 5 independent circuits. These correspond to the interior square and four trapezoids in
the planar version of the digraph, and hence to circuits around 5 of the 6 faces of the cube.
The “missing” face does indeed define a circuit, but it can be represented as the sum of
the other five circuits, and so is not independent. In Exercise 2.6.6, the reader is asked to
write out the incidence matrix for the cubical digraph and explicitly identify the basis of
its kernel with the circuits.

Further development of the many remarkable connections between graph theory and
linear algebra will be developed in the later chapters. The applications to very large
graphs, e.g., with millions or billions of vertices, is playing an increasingly important role
in modern computer science and data analysis. One example is the dominant internet
search engine run by Google, which is based on viewing the entire internet as a gigantic
(time-dependent) digraph. The vertices are the web pages, and a directed edge represents
a link from one web page to another. (The resulting digraph is not simple according to our
definition, since web pages can link in both directions.) Ranking web pages by importance
during a search relies on analyzing the internet digraph; see Section 9.3 for further details.

Exercises

2.6.1.(a) Draw the graph corresponding to the 6x7 incidence matrix whose nonzero (i, j) entries
equal 1if j = ¢and —1ifj = i+ 1,fori = 1to 6. (b) Find a basis for its
kernel and cokernel. (¢) How many circuits are in the digraph?

2.6.2. Draw the digraph represented by the following incidence matrices:

1 01 o0 10 -1 0 0 10 0 -1
1 00 —1 01 0 -1 1 01 0 0
@1 o -1 1 ol W31 o o O o 00 -1 1]
0 1 0 -1 00 1 —1 0 -1 1 0 0
10 1 0 o0 0 1 -1 00 0 0
-1 0 0 100 0
0 -1 0 1 0
0 0 0 -1 10 0
@] 1 =1 0 00}, (e .
0 -1 0 000 1
0 0 0 -1 1
0 0 -1 o1 0 0 -1 00 1 0
0O 0 0 00 1 —1
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2.6.3. Write out the incidence matrix of the following digraphs.

2.6.4. For each of the digraphs in Exercise 2.6.3, see whether you can predict a collection of
independent circuits. Verify your prediction by constructing a suitable basis of the cokernel
of the incidence matrix and identifying each basis vector with a circuit.

© 2.6.5.(a) Write down the incidence matrix A for the indicated digraph.
(b) What is the rank of A? (¢) Determine the dimensions of its four
fundamental subspaces. (d) Find a basis for its kernel and cokernel.
(e) Determine explicit conditions on vectors b that guarantee that the system
Ax = b has a solution. (f) Write down a specific nonzero vector b that
satisfies your conditions, and then find all possible solutions.

{ 2.6.6.(a) Write out the incidence matrix for the cubical digraph and identify the basis of its
cokernel with the circuits. (b) Find three circuits that do not correspond to any of your
basis elements, and express them as a linear combination of the basis circuit vectors.

© 2.6.7. Write out the incidence matrix for the other Platonic solids: (a) tetrahedron,
(b) octahedron, (c¢) dodecahedron, and (d) icosahedron. (You will need to choose an
orientation for the edges.) Show that, in each case, the number of independent circuits
equals the number of faces minus 1.

{ 2.6.8. Prove that a graph with n vertices and n edges must have at least one circuit.

© 2.6.9. A connected graph is called a tree if it has no circuits. (a) Find the incidence matrix for
each of the following directed trees:

N ST R

(b) Draw all distinct trees with 4 vertices. Assign a direction to the edges, and write down
the corresponding incidence matrices. (c¢) Prove that a connected graph on n vertices is a
tree if and only if it has precisely n — 1 edges.

© 2.6.10. A complete graph G,, on n vertices has one edge joining every distinct pair of vertices.
(a) Draw G5, G, and G5. (b) Choose an orientation for each edge and write out the
resulting incidence matrix of each digraph. (c¢) How many edges does G,, have? (d) How
many independent circuits?

© 2.6.11. The complete bipartite digraph Gm,n is based on two disjoint sets of, respectively, m
and n vertices. Each vertex in the first set is connected to each vertex in the second set
by a single edge. (a) Draw G, 5, Gy 4, and G5 5. (b) Write the incidence matrix of each
digraph. (c) How many edges does G,, ,, have? (d) How many independent circuits?
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© 2.6.12.(a) Construct the incidence matrix A for the disconnected digraph
D in the figure. (b) Verify that dimker A = 3, which is the same
as the number of connected components, meaning the maximal
connected subgraphs in D. (c¢) Can you assign an interpretation
to your basis for ker A? (d) Try proving the general statement
that dimker A equals the number of connected components in the
digraph D.

2.6.13. How does altering the direction of the edges of a digraph affect its incidence
matrix? The cokernel of its incidence matrix? Can you realize this operation by
matrix multiplication?

© 2.6.14.(a) Explain why two digraphs are equivalent under relabeling of vertices and
edges if and only if their incidence matrices satisfy P AQ = B, where P,(Q are
permutation matrices. (b) Decide which of the following incidence matrices produce
the equivalent digraphs:

10 -1 0 0 -1 1 0 10 0 -1
(@) 01 0 -1 T @iy |01 0 -1
11 0 o 1 00 —1) 10 -1 o)
00 1 —1 0 -1 0 1 00 -1 1
1 -1 00 1 0 0 -1 1 -1 0 0
. 1 0 -1 0 0 0 -1 1 ‘ 0 -1 1 0
@ g -1 o1 @Wlo -1 1 of @ 0 -1 0 1
0 0 -1 1 1 -1 0 0 -1 010

(c¢) How are the cokernels of equivalent incidence matrices related?

2.6.15. True or false: If A and B are incidence matrices of the same size and
coker A = coker B, then the corresponding digraphs are equivalent.

& 2.6.16.(a) Explain why the incidence matrix for a disconnected graph can be written in block

diagonal matrix form A = g g) under an appropriate labeling of the vertices.

(b) Show how to label the vertices of the digraph in Exercise 2.6.3e so that its incidence
matrix is in block form.
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Chapter 3

Inner Products and Norms

The geometry of Euclidean space is founded on the familiar properties of length and angle.
The abstract concept of a norm on a vector space formalizes the geometrical notion of the
length of a vector. In Euclidean geometry, the angle between two vectors is specified by
their dot product, which is itself formalized by the abstract concept of an inner product.
Inner products and norms lie at the heart of linear (and nonlinear) analysis, in both
finite-dimensional vector spaces and infinite-dimensional function spaces. A vector space
equipped with an inner product and its associated norm is known as an inner product
space. It is impossible to overemphasize their importance for theoretical developments,
practical applications, and the design of numerical solution algorithms.

Mathematical analysis relies on the exploitation of inequalities. The most fundamental
is the Cauchy—Schwarz inequality, which is valid in every inner product space. The more
familiar triangle inequality for the associated norm is then derived as a simple consequence.
Not every norm comes from an inner product, and, in such cases, the triangle inequality
becomes part of the general definition. Both inequalities retain their validity in both finite-
dimensional and infinite-dimensional vector spaces. Indeed, their abstract formulation
exposes the key ideas behind the proof, avoiding all distracting particularities appearing
in the explicit formulas.

The characterization of general inner products on Euclidean space will lead us to the
noteworthy class of positive definite matrices. Positive definite matrices appear in a wide
variety of applications, including minimization, least squares, data analysis and statistics,
as well as, for example, mechanical systems, electrical circuits, and the differential equa-
tions describing both static and dynamical processes. The test for positive definiteness
relies on Gaussian Elimination, and we can reinterpret the resulting matrix factorization
as the algebraic process of completing the square for the associated quadratic form. In
applications, positive definite matrices most often arise as Gram matrices, whose entries
are formed by taking inner products between selected elements of an inner product space.

So far, we have focussed our attention on real vector spaces. Complex numbers, vectors,
and functions also arise in numerous applications, and so, in the final section, we take the
opportunity to formally introduce complex vector spaces. Most of the theory proceeds in
direct analogy with the real version, but the notions of inner product and norm on complex
vector spaces require some thought. Applications of complex vector spaces and their inner
products are of particular significance in Fourier analysis, signal processing, and partial
differential equations, [61], and they play an absolutely essential role in modern quantum
mechanics, [54].

3.1 Inner Products
The most basic example of an inner product is the familiar dot product

VoW =0,w) FUwy A+ e +vnwnzzviwi7 (3.1)
i=1
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Uy

Figure 3.1. The Euclidean Norm in R? and R3.

between (column) vectors v = (vy,v,,...,0, )T, w = (wy, wy,...,w, )T, both lying in the

Euclidean space R™. A key observation is that the dot product (3.1) is equal to the matrix

product w,

Wa
v-w=viw=(v, vy, ... v,) : (3.2)

Wy,

between the row vector v and the column vector w.
The dot product is the cornerstone of Euclidean geometry. The key fact is that the dot
product of a vector with itself,

2 2 2
vV.-v=v]+v;+ -+,

is the sum of the squares of its entries, and hence, by the classical Pythagorean Theorem,
equals the square of its length; see Figure 3.1. Consequently, the Fuclidean norm or length
of a vector is found by taking the square root:

vl = VvV = Vol +vd+ - 02, (3.3)
Note that every nonzero vector, v # 0, has positive Euclidean norm, ||v| > 0, while only
the zero vector has zero norm: ||v| = 0 if and only if v = 0. The elementary properties
of dot product and Euclidean norm serve to inspire the abstract definition of more general
inner products.

Definition 3.1. An inner product on the real vector space V is a pairing that takes two
vectors v,w € V and produces a real number (v,w) € R. The inner product is required
to satisfy the following three axioms for all u,v,w € V, and scalars ¢,d € R.

(i) Bilinearity:  (cu+dv,w)=c(u,w)+d(v,w),

3.4

(u,ecv+dw)=c(u,v)+d(u,w). (3:4)

(i) Symmetry: (v,w)=(w,v). (3.5)
(iii) Positivity: (v,v) >0 whenever v #0, while (0,0)=0. (3.6)

A vector space equipped with an inner product is called an inner product space. As we
shall see, a vector space can admit many different inner products. Verification of the inner
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product axioms for the Euclidean dot product is straightforward, and left as an exercise
for the reader.

Given an inner product, the associated norm of a vector v € V' is defined as the positive
square root of the inner product of the vector with itself:

vl =v{v,v). (3.7)

The positivity axiom implies that || v| > 0 is real and non-negative, and equals 0 if and
only if v = 0 is the zero vector.

Example 3.2. While certainly the most common inner product on R2, the dot product
(V,W) =V W =v,w, + 05w,
is by no means the only possibility. A simple example is provided by the weighted inner
product v w
(v, W) =2v,w; + 5vyw,, V=< 1), w:< 1). (3.8)
Uy Wo

Let us verify that this formula does indeed define an inner product. The symmetry axiom
(3.5) is immediate. Moreover,

(cu+dv,w)=2(cuy +dvy)w; +5(cuy + dvy) wy
=c(2uyw; +buywy) +d(2v, wy +5vwy) =c(u,w)+d(v,w),
which verifies the first bilinearity condition; the second follows by a very similar computa-
tion. (Or, one can use the symmetry axiom to deduce the second bilinearity identity from
the first; see Exercise 3.1.9.) Moreover, (0,0) = 0, while
(v,v)=20v]+5v3 >0 whenever v #0,

since at least one of the summands is strictly positive. This establishes (3.8) as a legitimate

inner product on R?. The associated weighted norm ||v| = +/2v?+5v35 defines an
alternative, “non-Pythagorean” notion of length of vectors and distance between points in
the plane.
A less evident example of an inner product on R? is provided by the expression
(V, W) =0, w; — v Wy — Vyw; + 4vyw,. (3.9)

Bilinearity is verified in the same manner as before, and symmetry is immediate. Positivity
is ensured by noticing that the expression

(v,v) =02 =200, + 402 = (v; —vy)? +30v3 > 0

is always non-negative, and, moreover, is equal to zero if and only if v; — vy, =0, v, =0,
i.e., only when v; = v, = 0 and so v = 0. We conclude that (3.9) defines yet another inner
product on R?, with associated norm

IVl = Vivov) = vl — 2,0 1 42

The second example (3.8) is a particular case of a general class of inner products.

Example 3.3. Let ¢y,...,c, > 0 be a set of positive numbers. The corresponding

weighted inner product and weighted norm on R™ are defined by
(v,w) = Zciviwiv vl = V(v,v) =

i=1

(3.10)
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The numbers ¢; > 0 are the weights. Observe that the larger the weight c,, the more the
1th coordinate of v contributes to the norm. Weighted norms are particularly relevant in
statistics and data fitting, [43, 87], when one wants to emphasize the importance of certain
measurements and de-emphasize others; this is done by assigning appropriate weights to
the different components of the data vector v. Section 5.4, on least squares approximation
methods, will contain further details.

Exercises

3.1.1. Prove that the formula (v,w) = v w; — v; wy — vy w; + bvyw, defines an inner product
on R? if and only if b > 1.

3.1.2. Which of the following formulas for (v, w) define inner products on R??

(a) 20wy +3vywy, (b) vywy +vawy, (€) (v + vy)(wy +wy), (d) viw? + v3w},

(e) /o7 +03 \uf +wd, (£) 20w + (v = vy) (wy —wp),
(g) 4vywy —2v; wy — 205wy + 4V W,y

3.1.3. Show that (v, w) = v; wy +v; wy+ vy w; +vywsy does not define an inner product on R2.

3.1.4. Prove that each of the following formulas for (v,w) defines an inner product on R3.
Verify all the inner product axioms in careful detail:

(a) vy wy +2vywy + 3vgws, (b)) 4v;wy + 2v; wy + 2V wy + 4vywy + V3 W3,
(¢) 2v;wy — 20 Wy — 2V5 Wy + 3Vy Wy — Vg Wy — Vg Wy + 2Vg W4.

3.1.5. The unit circle for an inner product on R? is defined as the set of all vectors of unit
length: ||v| = 1. Graph the unit circles for (a) the Euclidean inner product, (b) the

weighted inner product (3.8), (¢) the non-standard inner product (3.9). (d) Prove that
cases (b) and (c) are, in fact, both ellipses.

{ 3.1.6.(a) Explain why the formula for the Euclidean norm in R? follows from the Pythagorean
Theorem. (b) How do you use the Pythagorean Theorem to justify the formula for the
Euclidean norm in R3? Hint: Look at Figure 3.1.

{ 3.1.7. Prove that the norm on an inner product space satisfies ||cv || = |c| || v|| for every scalar
¢ and vector v.

3.1.8. Prove that (av +bw,cv +dw) = ac||v|?*+ (ad+ be)(v,w) +bd|w]>

& 3.1.9. Prove that the second bilinearity formula (3.4) is a consequence of the first and the other
two inner product axioms.

¢ 3.1.10. Let V be an inner product space. (a) Prove that (x,v) = 0 for all v € V if and
only if x = 0. (b) Prove that (x,v) = (y,v) forall v € V if and only if x = y.
(c) Let vy,...,v,, bea basis for V. Prove that (x,v;) = (y,v;), 7 = 1,...,n,
if and only if x = y.
{ 3.1.11. Prove that x € R™ solves the linear system Ax = b if and only if
<l ATv =blv for all veR™.
The latter is known as the weak formulation of the linear system, and its generalizations are
of great importance in the study of differential equations and numerical analysis, [61].
& 3.1.12.(a) Prove the identity
2 2
(w,v) =3 (lla+v|*=Ju=v|?), (3.11)

which allows one to reconstruct an inner product from its norm. (b) Use (3.11) to find the

inner product on R? corresponding to the norm || v|| = \/U% — 30y vy + 503 .
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3.1.13.(a) Show that, for all vectors x and y in an inner product space,
2 2 2 2
Ix+y*+lx—ylI*=2(lIxI*+Iyl*)
(b) Interpret this result pictorially for vectors in R? under the Euclidean norm.

3.1.14. Suppose u,v satisfy ||u|| =3, [|[u+v]| =4, and ||u— v| = 6. What must || v | equal?
Does your answer depend upon which norm is being used?

3.1.15. Let A be any n x n matrix. Prove that the dot product identity v - (Aw) = (ATv) - w
is valid for all vectors v,w € R™.

¢ 3.1.16. Prove that A = AT is a symmetric n x n matrix if and only if (Av) -w = v - (Aw) for
all v,w e R™.

3.1.17. Prove that (A, B) = tr(A”7 B) defines an inner product on the vector space M of

real n X n matrices.

nxn

3.1.18. Suppose (v, w) defines an inner product on a vector space V. Explain why it also
defines an inner product on every subspace W C V.

3.1.19. Prove that if (v,w) and {(v,w)) are two inner products on the same vector space V,
then their sum ((v,w)) = (v,w) + (v, w)) defines an inner product on V.

¢ 3.1.20. Let V and W be inner product spaces with respective inner products (v,v) and
{(w,w ). Show that (((v,w),(V,w))) = (v,v)+ {(w,w)) forv,v eV, w,w e W,
defines an inner product on their Cartesian product V' x W.

Inner Products on Function Spaces

Inner products and norms on function spaces lie at the foundation of modern analysis
and its applications, particularly Fourier analysis, boundary value problems, ordinary and
partial differential equations, and numerical analysis. Let us introduce the most important
examples.

Example 3.4. Let [a,b] C R be a bounded closed interval. Consider the vector space

C°[a, b] consisting of all continuous scalar functions f defined on the interval [a,b]. The
integral of the product of two continuous functions,

b
(f.g)= / f(@) g(x) de, (3.12)

defines an inner product on the vector space C°[a,b], as we shall prove below. The asso-
ciated norm is, according to the basic definition (3.7),

b
HE / f@)?de (3.13)

and is known as the L? norm of the function f over the interval [a,b]. The L? inner
product and norm of functions can be viewed as the infinite-dimensional function space
versions of the dot product and Euclidean norm of vectors in R™. The reason for the name
L? will become clearer later on.

For example, if we take [a, b] = [O , %77], then the L? inner product between f(x) = sinx
and g(z) = cosx is equal to

71'/2 1 1

. _ . _ L 2 _
<smac,cosac>—/ sinz coszdr = o sin°z =_.
0
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Similarly, the norm of the function sin x is

/2 T
||sinz || = / (sinz)?de =/ — .
0 4

One must always be careful when evaluating function norms. For example, the constant

function ¢(z) = 1 has norm
/2
= [ e =7
0 2

not 1 as you might have expected. We also note that the value of the norm depends upon
which interval the integral is taken over. For instance, on the longer interval [0, 7],

|1|—,//07T12dx—\/%.

Thus, when dealing with the L? inner product or norm, one must always be careful to
specify the function space, or, equivalently, the interval on which it is being evaluated.

Let us prove that formula (3.12) does, indeed, define an inner product. First, we need
to check that ( f,g) is well defined. This follows because the product f(z)g(z) of two
continuous functions is also continuous, and hence its integral over a bounded interval is
defined and finite. The symmetry requirement is immediate:

b
(50 = [ $@ o = [ o) 1@ e = (9.5,
because multiplication of functions is commutative. The first bilinearity axiom
(cftdg,h)=c(f h)+d(g,h)

amounts to the following elementary integral identity

/ab[cf(a:)—l—dg() CL’—C/f da:—l—d/ab () h(z)de,

valid for arbitrary continuous functions f, g, h and scalars (constants) ¢,d. The second
bilinearity axiom is proved similarly; alternatively, one can use symmetry to deduce it
from the first as in Exercise 3.1.9. Finally, positivity requires that

b
1P =5.0) = [ fapds=0.
a
This is clear because f(x)? > 0, and the integral of a nonnegative function is nonnegative.
Moreover, since the function f(x)? is continuous and nonnegative, its integral will vanish,
/ f(z)*>dx = 0, if and only if f(x) = 0 is the zero function, cf. Exercise 3.1.29. This

completes the proof that (3.12) defines a bona fide inner product on the space C°[a, b].

Remark. The L? inner product formula can also be applied to more general functions, but
we have restricted our attention to continuous functions in order to avoid certain technical
complications. The most general function space admitting this inner product is known
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as Hilbert space, which forms the basis of much of modern analysis, function theory, and
Fourier analysis, as well as providing the theoretical setting for all of quantum mechanics,
[54]. Unfortunately, we cannot provide the mathematical details of the Hilbert space
construction, since it requires that you be familiar with measure theory and the Lebesgue
integral. See [61] for a basic introduction and [19, 68, 77] for the fully rigorous theory.

Warning. One needs to be extremely careful when trying to extend the L? inner product
to other spaces of functions. Indeed, there are nonzero discontinuous functions with zero
“L2 norm”. For example, the function

flo) = { Looe=0 satisfies || |2 = /1 Fla)? de =0, (3.14)
-1

0, otherwise,

because every function that is zero except at finitely many (or even countably many) points
has zero integral.

The L? inner product is but one of a vast number of possible inner products on function
spaces. For example, one can also define weighted inner products on the space C%[a,b].
The weighting along the interval is specified by a (continuous) positive scalar function
w(z) > 0. The corresponding weighted inner product and norm are

b b
= / f(@) g(2) w(z) dz, Il = \// f(@)? w(z) dx . (3.15)

The verification of the inner product axioms in this case is left as an exercise for the reader.
As in the finite-dimensional version, weighted inner products are often used in statistics
and data analysis, [20, 43, 87].

Exercises

3.1.21. For each of the given pairs of functions in C°[0, 1], find their L? inner product
(f,g) and their L? norms || f||, ||g|: (a) f(z) = 1, g(x) = z; (b) f(z) = cos2rz,

g(o) =sin2ra; (0) flz) ==, gle) =€ (d) f(a) = (@ + D g(o) = 7

3.1.22. Let f( ) =z, g( ) = 1+ 2. Compute (f,g), || f|l, and || g|| for (a) the L? inner
product ( / f(z)g(x)dz; (b) the L? inner product (f,g) / f(x)g(z) dx;
(c¢) the weighted inner product ( / f(x)g(z)zdz.

3.1.23. Which of the following formulas for ( f,g) define inner products on the space
1
or__ 2 —x
CY[—1,1]7 (a) /71 fl@)g(z)e * dx, / f(z)g(x) x du,
1 2
(© [ f@o@) @+ de, (@) [ J@)g)a dr.

3.1.24. Prove that ( / f(z)g(z) dx does not define an inner product on the vector

space CO[—l, 1]. Explaln why this does not contradict the fact that it defines an inner
product on the vector space CO[O, 1]. Does it define an inner product on the subspace
P CY[—1, 1] consisting of all polynomial functions?
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3.1.25. Does either of the following define an inner product on C°[0,1]?
1
(a) (f,9)=r0)g(0) +f(1)g(1), (b) (f,9)=F(0)g(0)+ f(1)g(1) +/O f(z)g(x) dz

3.1.26. Let f(z) be a function, and || f|| its L% norm on [a,b]. Is || f2| = || f]|?? If yes, prove
the statement. If no, give a counterexample.

b
& 3.1.27. Prove that (f,g) = / [f(m)g(a:) + f(z) g/(x)] dz defines an inner product on the
a
space C! [a,b] of continuously differentiable functions on the interval [a,b]. Write out the
corresponding norm, known as the Sobolev H! norm; it and its generalizations play an
extremely important role in advanced mathematical analysis, [49].
3.1.28. Let V = C!'[—1,1] denote the vector space of continuously differentiable functions for
—1 <z <1. (a) Does the expression ( f,g) / f'(z) ¢’ (z) dx define an inner product on

V? (b) Answer the same question for the subspace W = {f € V| f(0) = 0} consisting of
all continuously differentiable functions that vanish at 0.

& 3.1.29.(a) Let h(xz) > 0 be a continuous, non-negative function defined on an interval [a, b].

b d
Prove that / h(z)dz = 0 if and only if h(z) = 0. Hint: Use the fact that / h(z)dx > 0 if
C

a
h(z) > 0 for ¢ <z < d. (b) Give an example that shows that this result is not valid if & is
allowed to be discontinuous.

¢ 3.1.30.(a) Prove the inner product axioms for the weighted inner product (3.15), assuming
w(z) > 0 for all a < x < b. (b) Explain why it does not define an inner product if w is

continuous and w(z,) < 0 for some z, € [a,b]. (c) If w(x) > 0 for a <z < b, does (3.15)
define an inner product? Hint: Your answer may depend upon w(x).

© 3.1.31. Let Q C R? be a closed bounded subset. Let C° (2) denote the vector space consisting
of all continuous, bounded real-valued functions f(z,y) defined for (z,y) € Q. (a) Prove

that if f(z,y) > 0 is continuous and //Q f(z,y)dxdy = 0, then f(z,y) = 0. Hint: Mimic
Exercise 3.1.29. (b) Use this result to prove that

(f,9) // f(x,y)g(z,y) dedy (3-16)

defines an inner product on CO(Q)7 called the L? inner product on the domain €. What is
the corresponding norm?

3.1.32. Compute the L2 inner product (3.16) and norms of the functions f(z,y) = 1 and
g(x,y) = 2> + 9, when (a) Q={0<x<1,0<y<1}is the unit square;
(b) Q = {x? +y? < 1} is the unit disk. Hint: Use polar coordinates.

© 3.1.33. Let V be the vector space consisting of all continuous, vector-valued functions
f(z) = (fi(z), fo(x) )T defined on the interval 0 < z < 1.

1

(a) Prove that (f,g)) = /0 [f1 () g1 (x) + fo(x)gq (:r)] dx defines an inner product on V.
(b) Prove, more generally, that if (v, w) is any inner product on R?, then

b
(f,g) = / (f(z),g(x)) dr defines an inner product on V. (Part (a) corresponds to the

a
dot product.)  (c¢) Use part (b) to prove that

b
(f.g)= /a [f1(x)91(1’) = f1(@) go(@) — fo(x) g1 () + 3f2(x)92(x)} dx

defines an inner product on V.
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Figure 3.2.  Angle Between Two Vectors.

3.2 Inequalities

There are two absolutely basic inequalities that are valid for any inner product space.
The first is inspired by the geometric interpretation of the dot product on Euclidean space
in terms of the angle between vectors. It is named after two of the founders of modern
analysis, the nineteenth-century mathematicians Augustin Cauchy, of France, and Herman
Schwarz, of Germany, who established it in the case of the L? inner product on function
space.” The more familiar triangle inequality, that the length of any side of a triangle
is bounded by the sum of the lengths of the other two sides, is, in fact, an immediate
consequence of the Cauchy-Schwarz inequality, and hence also valid for any norm based
on an inner product.

We will present these two inequalities in their most general, abstract form, since this
brings their essence into the limelight. Specializing to different inner products and norms
on both finite-dimensional and infinite-dimensional vector spaces leads to a wide variety of
striking and useful inequalities.

The Cauchy—Schwarz Inequality

In Euclidean geometry, the dot product between two vectors v,w € R" can be geometri-
cally characterized by the equation

v-w=|v]||w] cosb, (3.17)

where § =4 (v, w) measures the angle between the two vectors, as illustrated in Figure 3.2.
Since |cosf| < 1, the absolute value of the dot product is bounded by the product of the
lengths of the vectors:

[vewl] < v [Iw].
This is the simplest form of the general Cauchy—Schwarz inequality. We present a direct
algebraic proof that does not rely on the geometrical notions of length and angle and thus
demonstrates its universal validity for any inner product.

Theorem 3.5. Every inner product satisfies the Cauchy—Schwarz inequality
[(v,w)| < |[v]|w], for all v,weV. (3.18)

Here, || v] is the associated norm, while |-| denotes the absolute value of a real number.
Equality holds in (3.18) if and only if v and w are parallel vectors.

T Russians also give credit for its discovery to their compatriot Viktor Bunyakovsky, and, indeed,
some authors append his name to the inequality.
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Proof: The case when w = 0 is trivial, since both sides of (3.18) are equal to 0. Thus, we
concentrate on the case when w # 0. Let ¢ € R be an arbitrary scalar. Using the three
inner product axioms, we have

0<[[v+tw|P=(v+tw,v+itw)=(v,v)+2t({v,w)+t*(w,w) (3.19)
= vIP+2t(v,w)+ ¢ |w]? '

with equality holding if and only if v = —tw — which requires v and w to be parallel
vectors. We fix v and w, and consider the right-hand side of (3.19) as a quadratic function
of the scalar variable ¢:

0<p(t)=at*+2bt+c, where a=|wl? b={(v,w), c=|v|>

To get the maximum mileage out of the fact that p(¢) > 0, let us look at where it assumes
its minimum, which occurs when its derivative is zero:

b
p'(t) =2at+2b=0, and so t=——- = — <V’WQ>
a [[w]
Substituting this particular value of ¢ into (3.19), we obtain
(viw)?  (v,w)’ 2 (v,w)?
0 < fv]*~2 = IvIF = 5=
[[wi[? [[wi? [[w |
Rearranging this last inequality, we conclude that
(v,w)?
W < vl or  (v,w)? < [v[?[w]?*

Also, as noted above, equality holds if and only if v and w are parallel. Equality also holds
when w = 0, which is of course parallel to every vector v. Taking the (positive) square

root of both sides of the final inequality completes the proof of (3.18). Q.E.D.
Given any inner product, we can use the quotient
cosf = v, w) (3.20)
v w]

to define the “angle” 6 =< (v, w) between the vector space elements v,w € V. The
Cauchy-Schwarz inequality tells us that the ratio lies between —1 and +1, and hence the
angle 6 is well defined modulo 27, and, in fact, unique if we restrict it to lie in the range
0<0<m.

For example, the vectors v = (1,0,1 )T, w=(0,1,1 )T have dot product v-w = 1 and
norms || v| = |w|| = v/2. Hence the Euclidean angle between them is given by

11
V2 v2 o 27
On the other hand, if we adopt the weighted inner product (v, w) = v, wy +2 v, wy+3v5ws,
then v-w =3, |[v||=2, ||w]| =5, and hence their “weighted” angle becomes

cosf = and so =< (v,w)=1ir=10471....

cosﬁzi:.67082..., with 0= (v,w)=.83548....

25

Thus, the measurement of angle (and length) depends on the choice of an underlying inner
product.
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Similarly, under the L? inner product on the interval [0, 1], the “angle” 6 between the
polynomials p(z) = x and ¢(z) = 22 is given by

1
/x3d:£ 1
(z,2?) 0 1 15

1
el = 1 — a5 Ve
\// z2dx \// x4 dx 3 >

0 0

so that 0 =< (p,q) = .25268 ... radians.

Warning. You should not try to give this notion of angle between functions more sig-
nificance than the formal definition warrants — it does not correspond to any “angular”
properties of their graphs. Also, the value depends on the choice of inner product and
the interval upon which it is being computed. For example, if we change to the L? inner

cosf =

1
product on the interval [—1,1], then (z,z?) = / 23 dr = 0. Hence, (3.20) becomes
—1

cosf = 0, so the “angle” between z and 2 is now 0 =< (p,q) = 3.

Exercises

3.2.1. Verify the Cauchy—Schwarz inequality for each of the following pairs of vectors v, w,
using the standard dot product, and then determine the angle between them:
(a‘) (1:2)T> (_1a2)T: (b) (17_1a0)T7 (_13071)T7 (C) (17_130)T: (2a2a2)T7
(d) ( 17 _17 17 0)T7 ( _27 07 _17 1 )Tv (6) (27 17 _27 -1 )Tv (07 _17 27 -1 )T'

3.2.2.(a) Find the Euclidean angle between the vectors (1,1,1,1 )T and (1,1,1,-1 )T in R%.

(b) List the possible angles between (1,1,1,1 )T and (aq,ay,as,ay )T, where each a; is
either 1 or —1.

3.2.3. Prove that the points (0, 0,0), (1,1,0), (1,0,1),(0,1,1) form the vertices of a regular
tetrahedron, meaning that all sides have the same length. What is the common Euclidean
angle between the edges? What is the angle between any two rays going from the
center ( %, %, % ) to the vertices? Remark. Methane molecules assume this geometric
configuration, and the angle influences their chemistry.

3.2.4. Verify the Cauchy—Schwarz inequality for the vectors v = (1,2 )T, w=(1,-3 )T, using
(a) the dot product; (b) the weighted inner product (v ,w) = vy wy + 2vy wy;
(¢) the inner product (3.9).

3.2.5. Verify the Cauchy—Schwarz inequality for the vectors v = (3,—1,2 )T ,w=(1,-1,1 )T,
using (a) the dot product; (b) the weighted inner product (v, w) = v; w;+2vywy+3v5wa;

2 -1 0
(¢) the inner product (v,w) = v’ (—1 2 —1) w.
0 -1 2

{ 3.2.6. Show that one can determine the angle § between v and w via the formula

2 _ 2
cosf = v+ wli lv = w] . Draw a picture illustrating what is being measured.
Alviliwl
$ 3.2.7. The Law of Cosines: Prove that the formula
2 2 2
[v—=wl"=lvI®+[wl”=2[v[w] cosb, (3.21)

where 6 is the angle between v and w, is valid in every inner product space.
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3.2.8. Use the Cauchy—Schwarz inequality to prove (acos 6 + bsin 9)2 < a®+b? for any 0, a, b.

3.2.9. Prove that (a; + ay+ -+ +a,)* < n(a? + a3+ +a?) for any real numbers
ay,...,a,. When does equality hold?

© 3.2.10. The cross product of two vectors in R? is defined as the scalar
V X W = U Wy — Uy W for V:(’UI,UQ)T, W:(wl,wQ)T. (3.22)
(a) Does the cross product define an inner product on R2? Carefully explain which axioms

are valid and which are not. (b) Prove that v x w = ||v|| ||w|| sinf, where 6 denotes the
angle from v to w as in Figure 3.2. (c¢) Prove that v x w = 0 if and only if v and w are

parallel vectors. (d) Show that |v x w| equals the area of the parallelogram defined by v
and w.

¢ 3.2.11. Explain why the inequality (v,w) < ||v|| || w]|, obtained by omitting the absolute
value sign on the left-hand side of Cauchy—Schwarz, is valid.

3.2.12. Verify the Cauchy—Schwarz inequality for the functions f(z) = x and g(z) = ® with
respect to (a) the L? inner product on the interval [0,1], (b) the L? inner product on

1
[—1,1], (¢) the weighted inner product { f,g) = /O f(@)g(z)e * d.
3.2.13. Using the L? inner product on the interval [0, 7], find the angle between the functions
(a) 1 and cosz; (b) 1 andsinz;  (¢) cosz and sinz.

3.2.14. Verify the Cauchy—Schwarz inequality for the two particular functions appearing in
Exercise 3.1.32 using the L? inner product on (a) the unit square; (b) the unit disk.

Orthogonal Vectors

In Euclidean geometry, a particularly noteworthy configuration occurs when two vectors are
perpendicular. Perpendicular vectors meet at a right angle, 8 = %ﬂ' or %7?, with cos@ = 0.
The angle formula (3.17) implies that the vectors v, w are perpendicular if and only if their
dot product vanishes: v -w = 0. Perpendicularity is of interest in general inner product

spaces, but, for historical reasons, has been given a more suggestive name.

Definition 3.6. T'wo elements v,w € V of an inner product space V are called orthogonal
if their inner product vanishes: (v, w) = 0.

In particular, the zero element is orthogonal to all other vectors: (0,v) = 0 for all
v € V. Orthogonality is a remarkably powerful tool that appears throughout the manifold
applications of linear algebra, and often serves to dramatically simplify many computations.
We will devote all of Chapter 4 to a detailed exploration of its manifold implications.

Example 3.7. The vectors v = (1,2)" and w = (6,—3)" are orthogonal with respect
to the Euclidean dot product in R?, since v-w = 1-6+2-(—3) = 0. We deduce that

they meet at a right angle. However, these vectors are not orthogonal with respect to the
weighted inner product (3.8):

(v,w>:<<;>, <_g>>=2~1~6—|—5-2-(—3):—187é0.

Thus, the property of orthogonality, like angles in general, depends upon which inner
product is being used.
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Example 3.8. The polynomials p(r) = z and ¢(z) = 22— % are orthogonal with respect

1
to the inner product (p,q) = / p(z) q(x) dz on the interval [0, 1], since
0

1 1
<x,x2—%>:/0 I(IQ—%)dI:/O (mg—%x)d:rzo.

They fail to be orthogonal on most other intervals. For example, on the interval [0, 2],
2 2
<x,x2—%>:/ m(rQ—%)dx:/ (m3—%x)d:r:3.
0 0

Warning. There is no obvious connection between the orthogonality of two functions and
the geometry of their graphs.

Exercises
Note: Unless stated otherwise, the inner product is the standard dot product on R™.

3.2.15.(a) Find a such that (2,a,—3)7 is orthogonal to (—1,3,—2)7. (b) Is there any value
of a for which (2, a, —3)T is parallel to (—1,3,—2 )T?

3.2.16. Find all vectors in R® that are orthogonal to both (1,2, 3)T and (—2,0,1 )T.

3.2.17. Answer Exercises 3.2.15 and 3.2.16 using the weighted inner product
(v,w) =3v;w; + 2vywy + v3w5.

3.2.18. Find all vectors in R* that are orthogonal to both (1,2, 3, 4)T and (5,6,7, 8)T.

3.2.19. Determine a basis for the subspace W C R* consisting of all vectors which are
orthogonal to the vector (1,2,—1,3 )T.

3.2.20. Find three vectors u,v and w in R? such that u and v are orthogonal, u and w are
orthogonal, but v and w are not orthogonal. Are your vectors linearly independent or
linearly dependent? Can you find vectors of the opposite dependency satisfying the same
conditions? Why or why not?

3.2.21. For what values of a,b are the vectors (1,1, a)T and (b,—1,1 )T orthogonal
(a) with respect to the dot product?
(b) with respect to the weighted inner product of Exercise 3.2.177

3.2.22. When is a vector orthogonal to itself?

{ 3.2.23. Prove that the only element w in an inner product space V' that is orthogonal to every
vector, so (w,v) =0 for all v € V| is the zero vector: w = 0.

3.2.24. A vector with ||v| = 1 is known as a unit vector. Prove that if v, w are both unit
vectors, then v + w and v — w are orthogonal. Are they also unit vectors?

{ 3.2.25. Let V be an inner product space and v € V. Prove that the set of all vectors w € V
that are orthogonal to v is a subspace of V.

3.2.26.(a) Show that the polynomials p;(z) = 1, py(z) = = — %, ps(x) = ot — x4 %
are mutually orthogonal with respect to the L? inner product on the interval [0, 1].

(b) Show that the functions sinnmx, n = 1,2,3,..., are mutually orthogonal with respect
to the same inner product.
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v+w] |w|

vl

Figure 3.3.  Triangle Inequality.

3.2.27. Find a non-zero quadratic polynomial that is orthogonal to both p;(z) = 1 and
Po() = x under the L? inner product on the interval [—1,1].

3.2.28. Find all quadratic polynomials that are orthogonal to the function e” with respect to
the L? inner product on the interval [0, 1].

3.2.29. Determine all pairs among the functions 1, z, cos 7z, sin 7z, e”, that are orthogonal
with respect to the L? inner product on [—1,1].

3.2.30. Find two non-zero functions that are orthogonal with respect to the weighted inner
1
product (f,9) = [ f(z) g(a) a d.

The Triangle Inequality

The familiar triangle inequality states that the length of one side of a triangle is at most
equal to the sum of the lengths of the other two sides. Referring to Figure 3.3, if the
first two sides are represented by vectors v and w, then the third corresponds to their
sum v + w. The triangle inequality turns out to be an elementary consequence of the
Cauchy—Schwarz inequality (3.18), and hence is valid in every inner product space.

Theorem 3.9. The norm associated with an inner product satisfies the triangle inequality
lv+wl| < ||v]+||w] for all v,weV. (3.23)
Equality holds if and only if v and w are parallel vectors.

Proof: We compute
Iv+wl?=(v+w,vitw)=|v|*+2(v,w)+]|w]
2
<IvIP+20viliwll+Iwl® = (lvi+wl),

where the middle inequality follows from Cauchy—-Schwarz, cf. Exercise 3.2.11. Taking
square roots of both sides and using the fact that the resulting expressions are both positive

completes the proof. Q.E.D.
1 2 3

Example 3.10. The vectors v = 2)landw= (0| sumtov+w=| 2 |. Their
-1 3 2

Euclidean norms are || v|| = v/6 and ||w| = /13, while ||[v +w| = v/17. The triangle
inequality (3.23) in this case says v/17 < v/6 + /13, which is true.
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Example 3.11. Consider the functions f(r) = 2 — 1 and g(z) = 22 + 1. Using the L?
norm on the interval [ , we find that

1
28
1= [ e = ol =/ [ @ v2ae = /32,
0

1
If+gll = /0 (22 + ) de =

The triangle inequality requires \/ \/> , which is valid.

The Cauchy—Schwarz and triangle inequalities look much more impressive when written
out in full detail. For the Euclidean dot product (3.1), they are

n
< Yo
- (3.24)
< i v?
=1

Theorems 3.5 and 3.9 imply that these inequalities are valid for arbitrary real numbers
Vyyeney U, Wy, ..., w,. For the L? inner product (3.13) on function space, they produce the

following splendid integral inequalities:
b b
<[ rarar [ a@ras.
\// x)+g(x daj<\//f 2dw+\// z)?dx ,

which hold for arbitrary continuous (and, in fact, rather general) functions. The first of
these is the original Cauchy—Schwarz inequality, whose proof appeared to be quite deep
when it first appeared. Only after the abstract notion of an inner product space was
properly formalized did its innate simplicity and generality become evident.

(3.25)

Exercises

3.2.31. Use the dot product on R? to answer the following: (a) Find the angle between the
vectors (1,2,3)7 and (1,-1,2)7 . (b) Verify the Cauchy-Schwarz and triangle inequalities
for these two particular vectors. (¢) Find all vectors that are orthogonal to both of these
vectors.

3.2.32. Verify the triangle inequality for each pair of vectors in Exercise 3.2.1.
3.2.33. Verify the triangle inequality for the vectors and inner products in Exercise 3.2.4.

3.2.34. Verify the triangle inequality for the functions in Exercise 3.2.12 for the indicated inner
products.
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3.2.35. Verify the triangle inequality for the two particular functions appearing in Exercise
3.1.32 with respect to the L2 inner product on (a) the unit square; (b) the unit disk.

1
3.2.36. Use the L? inner product ( f,g) = / ) f(x) g(x) dz to answer the following:
(a) Find the “angle” between the functions 1 and x. Are they orthogonal? (b) Verify the
Cauchy—Schwarz and triangle inequalities for these two functions. (¢) Find all quadratic
polynomials p(z) = a + bz + cz? that are orthogonal to both of these functions.

3.2.37.(a) Write down the explicit formulae for the Cauchy—Schwarz and triangle inequalities

1
based on the weighted inner product (f,g) = /0 f(x)g(z)e® dx. (b) Verify that the

inequalities hold when f(z) = 1, g(xz) = €* by direct computation. (¢) What is the “angle”
between these two functions in this inner product?

3.2.38. Answer Exercise 3.2.37 for the Sobolev H' inner product
1
(f,g9)= /0 [f(a:)g(x) + f/(:n)g/(:v)] dz, cf. Exercise 3.1.27.

3.2.39. Prove that ||v —w] > | v = Iw]l | Interpret this result pictorially.

3.2.40. True or false: |[w]| < |[|[v]+|[v+w]| for all v,w € V.

© 3.2.41.(a) Prove that the space R® consisting of all infinite sequences x = (1,25, 3, ... )
of real numbers x; € R is a vector space. (b) Prove that the set of all sequences x such

o0
that > mi < o is a subspace, commonly denoted by 2 c R, (¢) Write down two
k=1
examples of sequences x belonging to £? and two that do not belong to £2. (d) True or
false: If x € £2, then z, = 0and k — oco. (e) True or false: If x;, — 0 as k — oo, then

x e 2. (f) Given a € R, let x be the sequence with z; = oF. For which values of « is
o0

x € 12?7 (g) Answer part (f) when x, = k. (h) Prove that (x,y) = > z,y; defines an
k=1

inner product on the vector space £2. What is the corresponding norm? (i) Write out the

Cauchy—Schwarz and triangle inequalities for the inner product space 2.

3.3 Norms

Every inner product gives rise to a norm that can be used to measure the magnitude or
length of the elements of the underlying vector space. However, not every norm that is
used in analysis and applications arises from an inner product. To define a general norm
on a vector space, we will extract those properties that do not directly rely on the inner
product structure.

Definition 3.12. A norm on a vector space V assigns a non-negative real number || v||
to each vector v € V, subject to the following axioms, valid for every v,w € V and ¢ € R:

(i) Positivity: ||v| >0, with ||v| =0 if and only if v =0.
(it) Homogeneity: |cv] =|c||v]
(@i) Triangle inequality:  ||[v+w] <[ v| + ||w].

As we now know, every inner product gives rise to a norm. Indeed, positivity of the
norm is one of the inner product axioms. The homogeneity property follows since

[evll = Viev,ev) = v (v,v) = [e[v(v,v) = [e][v].
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Finally, the triangle inequality for an inner product norm was established in Theorem 3.9.
Let us introduce some of the principal examples of norms that do not come from inner
products.

First, let V' =R"™. The 1 norm of a vector v = (vy,vy,...,v, )" is defined as the sum
of the absolute values of its entries:

Vil =log [+ lvp [+ o+, | (3.26)
The max or co norm is equal to its maximal entry (in absolute value):
IVllee = max { oy | vz ], -0, |} (3.27)

Verification of the positivity and homogeneity properties for these two norms is straight-
forward; the triangle inequality is a direct consequence of the elementary inequality

la+bl<lal+]b], a,beR,

for absolute values.

The Euclidean norm, 1 norm, and co norm on R™ are just three representatives of the
general p norm

(3.28)

This quantity defines a norm for all 1 < p < co. The co norm is a limiting case of (3.28) as
p — oo. Note that the Euclidean norm (3.3) is the 2 norm, and is often designated as such;
it is the only p norm which comes from an inner product. The positivity and homogeneity
properties of the p norm are not hard to establish. The triangle inequality, however, is not
trivial; in detail, it reads

(3.29)

and is known as Minkowski’s inequality. A complete proof can be found in [50].
There are analogous norms on the space C°[a, b] of continuous functions on an interval
[a,b]. Basically, one replaces the previous sums by integrals. Thus, the L norm is defined

b
170, =/ / (@) [ dr (3.30)

In particular, the L! norm is given by integrating the absolute value of the function:

b
£l = / | (@) |de. (3.31)

The L2 norm (3.13) appears as a special case, p = 2, and, again, is the only one arising
from an inner product. The limiting L>° norm is defined by the maximum

[flloo =max{|f(z)| : a <z <b}. (3.32)

Positivity of the LP norms again relies on the fact that the only continuous non-negative
function with zero integral is the zero function. Homogeneity is easily established. On the
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v —w]|

Figure 3.4. Distance Between Vectors.
other hand, the proof of the general triangle, or Minkowski, inequality for p # 1,2, 0 is
again not trivial, [19, 68].

Example 3.13. Consider the polynomial p(z) = 322 — 2 on the interval —1 < z < 1.

! 18
ol = / (322 —2)2dx = + =18973....
—1

[Pl =max{[32? -2 : -1 <2 <1} =2

with the maximum occurring at = 0. Finally, its L' norm is

1
/ |322 — 2| dx
-1

/m(s 29y +/W/_3 (2-322)d +/ (322 —2)d

_ 4 2 8 2 4 2 __ 16 2 _
_(5\/§_1)+§ §+(§\/;—1)_§ 2_9-923546... .

Every norm defines a distance between vector space elements, namely

div,w) =|v—w]|. (3.33)

Its L2 norm is

Its L°° norm is

Pl

1

For the standard dot product norm, we recover the usual notion of distance between points
in Euclidean space. Other types of norms produce alternative (and sometimes quite useful)
notions of distance that are, nevertheless, subject to all the familiar properties:

(a) Symmetry: d(v,w) =d(w,v);
(b) Positivity: d(v,w) =0 if and only if v = w;
(¢) Triangle inequality: d(v,w) < d(v,z) + d(z,w).

Just as the distance between vectors measures how close they are to each other —
keeping in mind that this measure of proximity depends on the underlying choice of norm
— so the distance between functions in a normed function space tells something about
how close they are to each other, which is related, albeit subtly, to how close their graphs
are. Thus, the norm serves to define the topology of the underlying vector space, which
determines notions of open and closed sets, convergence, and so on, [19, 68].
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Exercises

3.3.1. Compute the 1, 2, 3, and co norms of the vectors (é) , <O

1 ) Verify the triangle

inequality in each case.

3.3.2. Answer Exercise 3.3.1 for (a) (_f)(_;) (b) (_(}),(_i),(c) (:%)(:z)

3.3.3. Which two of the vectors u = (—2,2,1 )T , v=(1,4,1 )T, w = (0,0,-1 )T are closest
to each other in distance for (a) the Euclidean norm? (b) the co norm? (c) the 1 norm?

3.3.4.(a) Compute the L> norm on [0, 1] of the functions f(z) = 1 — z and g(z) = = — z°.
(b) Verify the triangle inequality for these two particular functions.
3.3.5. Answer Exercise 3.3.4 using the L! norm.

3.3.6. Which two of the functions f(z) =1, g(x) = z, h(z) = sin mx are closest to each other
on the interval [0,1] under (a) the L! norm? (b) the L? norm? (c) the L> norm?

3.3.7. Consider the functions f(z) = 1 and g(z) = = — % as elements of the vector space
CY10,1]. For each of the following norms, compute || f ||, g, || f + ¢||, and verify the

triangle inequality: (a) the L' norm; (b) the L? norm; (¢) the L® norm; (d) the L° norm.
3.3.8. Answer Exercise 3.3.7 when f(z) = ¢” and g(z) = e~ ”.
3.3.9. Carefully prove that ||(z,y)” || =|z|+2|z—y| defines a norm on R?.
3.3.10. Prove that the following formulas define norms on R?: (a) [|v|| = \/m,

(b) IVl = 20} —vivg +203, (¢) IIvIl=2]vy | +]vgl, (d) [Iv]l=max{2|v|,]vq]},
() [Ivil =max{|v; = vy, [y + oy |} (£) IV = vy — vy +[vg +uy.

3.3.11. Which of the following formulas define norms on R3? (a) ||v| = V20? +v3 + 303,
(b) IVl = \of + 2010y +03 + 03, (¢) IIv]=max{|vy |, [vy],|v5]},
(d) IVl =lvy = vy |+ vy = vy |+ vz = vy |, (e) [IV] =|vy | +max{|vy],|vs]}-

3.3.12. Prove that two parallel vectors v and w have the same norm if and only if v = +w.
3.3.13. True or false: If ||[v +w| = ||v]| + | w]|, then v, w are parallel vectors.

3.3.14. Prove that the oo norm on R? does not come from an inner product. Hint: Look at
Exercise 3.1.13.

3.3.15. Can formula (3.11) be used to define an inner product for (a) the 1 norm ||v||; on R2?
(b) the co norm | v ||, on R??

¢ 3.3.16. Prove that lim [V, =Vl forall ve R2.

P — 00
¢ 3.3.17. Justify the triangle inequality for (a) the L' norm (3.31); (b) the L norm (3.32).
& 3.3.18. Let w(z) > 0 for a <z < b be a weight function. (a) Prove that
b
Nl w = / | f(z) | w(z)dz defines a norm on C%[a, b], called the weighted L* norm.
’ a
(b) Do the same for the weighted L norm || f || ,, = maX{ [ f@)|w(x) : a<z< b}.
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3.3.19. Let ||-||; and ||-|| be two different norms on a vector space V. (a) Prove that
v = max{ vl vie } defines a norm on V. (b) Does || v| = min{ v vy } define

a norm? (c¢) Does the arithmetic mean ||v| = %(Hv”l + ||v||2) define a norm?

(d) Does the geometric mean ||v| = /||v|; [|v]y define a norm?

Unit Vectors

Let V be a normed vector space. The elements u € V' that have unit norm, ||[u| = 1, play
a special role, and are known as unit vectors (or functions or elements). The following easy
lemma shows how to construct a unit vector pointing in the same direction as any given
nonzero vector.

Lemma 3.14. If v # 0 is any nonzero vector, then the vector u = v/||v|| obtained by
dividing v by its norm is a unit vector parallel to v.

Proof: We compute, making use of the homogeneity property of the norm and the fact
that || v] is a scalar,

H v H = Q-LD.

Example 3.15. The vector v = (1,—2)" has length | v, = v/5 with respect to the
standard Euclidean norm. Therefore, the unit vector pointing in the same direction is

- =2 ()= 7
MR~ vs\-2) T\ 2
On the other hand, for the 1 norm, ||v|; = 3, and so

-5 ()= ()

is the unit vector parallel to v in the 1 norm. Finally, || v||,, = 2, and hence the corre-
sponding unit vector for the co norm is

. v 1 < 1) 3
ui=——= - = .
IVie 2\ 72 -1

Thus, the notion of unit vector will depend upon which norm is being used.

WK Wl

.. . . . 2 1
Example 3.16. Similarly, on the interval [0, 1], the quadratic polynomial p(z) = 2 — 3

has L2 norm

Iplle = \//l(xz—%fdx - \//1(x4—x2+%)dx = Ve

Therefore, u(z) = ” H \/ 1/ is a “unit polynomial”, ||u|, = 1, which is
p

“parallel” to (or, more precisely, a scalar multiple of) the polynomial p. On the other
hand, for the L*° norm,

[plloe =max{|2® = 5| | 0<a <1}

1
2
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Figure 3.5.  Unit Balls and Spheres for 1, 2, and co Norms in R2.

and hence, in this case, u(z) = 2p(x) = 222 — 1 is the corresponding unit polynomial.
The unit sphere for the given norm is defined as the set of all unit vectors
Sy ={llul=1}, while S,={llul=r} (3.34)

is the sphere of radius » > 0. Thus, the unit sphere for the Euclidean norm on R" is the
usual round sphere
Sy ={lIx|*=af+a3+ - +ai =1}
The unit sphere for the co norm is the surface of a unit cube:
|z;|<1,i=1,...,n, and either }

Slz{xE]R”
zy=xlorazg==xlor ... orz, ==+1

For the 1 norm,

Sy =A{xeR"[ [z [+]zy[+ - +]zx,[=1}
is the unit diamond in two dimensions, unit octahedron in three dimensions, and unit cross
polytope in general. See Figure 3.5 for the two-dimensional pictures.

In all cases, the unit ball B; = {|[u]| <1} consists of all vectors of norm less than or
equal to 1, and has the unit sphere as its boundary. If V' is a finite-dimensional normed
vector space, then the unit ball B is a compact subset, meaning that it is closed and
bounded. This basic topological fact, which is not true in infinite-dimensional normed
spaces, underscores the distinction between finite-dimensional vector analysis and the vastly
more complicated infinite-dimensional realm.

Exercises

3.3.20. Find a unit vector in the same direction as v = (1,2, -3 )T for (a) the Euclidean norm,
(b) the weighted norm || v > = 20% + v3 + %vg, (¢) the 1 norm, (d) the oo norm, (e) the
norm based on the inner product 2v; wy — v{ wy — Vo Wy + 2Vg Wy — Vg Wy — V3 Wy + 2V5 W3

3.3.21. Show that, for every choice of given angles 6 , ¢, and v, the following are unit vectors

in the Euclidean norm: (a) (cos6 cos ¢, cos @ sin ¢, sin 6 )T. (b) % (cos8,sin b, cos ¢, sin ¢
T

)"
(¢) (cosBcos ¢ costy,cosbcos@sin, cosbsin ¢, sinb)

3.3.22. How many unit vectors are parallel to a given vector v # 07 (a) 1, (b) 2, (¢) 3,
(d) oo, (e) depends on the norm. Explain your answer.

3.3.23. Plot the unit circle (sphere) for (a) the weighted norm ||v|| = y/v} + 403 ;
(b) the norm based on the inner product (3.9); (¢) the norm of Exercise 3.3.9.
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3.3.24. Draw the unit circle for each norm in Exercise 3.3.10.
3.3.25. Sketch the unit sphere S; C R? for (a) the L' norm, (b) the L> norm, (c) the
weighted norm || v ||> = 21}% + vg + 31}%, (d) v = max{ vy + vy |, | vy +v3], | vy +vg] }

3.3.26. Let v # 0 be any nonzero vector in a normed vector space V. Show how to construct a
new norm on V that changes v into a unit vector.

3.3.27. True or false: Two norms on a vector space have the same unit sphere if and only if
they are the same norm.

3.3.28. Find the unit function that is a constant multiple of the function f(z) = =z — % with
respect to the (a) L' norm on [0,1]; (b) L% norm on [0,1]; (¢) L® norm on [0,1]; (d) L*
norm on [—1,1]; (e) L2 norm on [—1,1]; (f) L° norm on [—1,1].

3.3.29. For which norms is the constant function f(z) =1 a unit function?

(a) L' norm on [0,1]; (b) L? norm on [0,1]; (¢) L norm on [0,1];
(d) L' norm on [—1,1]; (e) L? norm on [—1,1]; (f) L° norm on [—1,1];
(g) L' norm on R; (h) L? norm on R; (i) L° norm on R.

$ 3.3.30. A subset S C R" is called convez if, for all x,y € S, the line segment joining x to y
is also in S, ie., tx+ (1 —t)y € S for all 0 < ¢t < 1. Prove that the unit ball is a convex
subset of a normed vector space. Is the unit sphere convex?

Equivalence of Norms

While there are many different types of norms, in a finite-dimensional vector space they
are all more or less equivalent. “Equivalence” does not mean that they assume the same
values, but rather that they are, in a certain sense, always close to one another, and so,
for many analytical purposes, may be used interchangeably. As a consequence, we may be
able to simplify the analysis of a problem by choosing a suitably adapted norm; examples
can be found in Chapter 9.

Theorem 3.17. Let ||-||; and || ||, be any two norms on R™. Then there exist positive
constants 0 < ¢* < C* such that

ANvili<lIvile <C* vy for every v eR™ (3.35)

Proof: We just sketch the basic idea, leaving the details to a more rigorous real analysis
course, cf. [19; §7.6]. We begin by noting that a norm defines a continuous real-valued
function f(v) = | v] on R™. (Continuity is, in fact, a consequence of the triangle inequal-
ity.) Let S; = {|ull; =1} denote the unit sphere of the first norm. Every continuous
function defined on a compact set achieves both a maximum and a minimum value. Thus,
restricting the second norm function to the unit sphere S; of the first norm, we can set

¢ =min{ ||uly| ue s}, C* =max{||ul,| ues; }. (3.36)

Moreover, 0 < ¢* < C* < oo, with equality holding if and only if the norms are the same.
The minimum and maximum (3.36) will serve as the constants in the desired inequalities
(3.35). Indeed, by definition,

¢ <llul,<C*  when Jul, =1, (3.37)

which proves that (3.35) is valid for all unit vectors v.=u € S,. To prove the inequalities in
general, assume v # 0. (The case v = 0 is trivial.) Lemma 3.14 says that u = v/||v||; € S,
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Figure 3.6. Equivalence of the oo and 2 Norms.

is a unit vector in the first norm: ||ul|; = 1. Moreover, by the homogeneity property of the

norm, ||u|ly = || v|y/||v]l;. Substituting into (3.37) and clearing denominators completes
the proof of (3.35). Q.E.D.
Example 3.18. Consider the Euclidean norm |||/, and the max norm ||| on R".

According to (3.36), the bounding constants are found by minimizing and maximizing
|lul|, = max{|u,|,...,|u, |} over all unit vectors ||ul|, =1 on the (round) unit sphere.
The maximal value is achieved at the poles e, with |+ e, |, = C* = 1. The minimal

value is attained at the points <:|: ﬁ s, E % ), whereby c* = ﬁ . Therefore,

1
N vy < Vil <MVl (3.38)
We can interpret these inequalities as follows. Suppose v is a vector lying on the unit sphere
in the Euclidean norm, so || v||, = 1. Then (3.38) tells us that its co norm is bounded from

above and below by ﬁ <||v|lo < 1. Therefore, the Euclidean unit sphere sits inside the
oo norm unit sphere and outside the co norm sphere of radius ﬁ . Figure 3.6 illustrates
the two-dimensional situation: the unit circle is inside the unit square, and contains the

square of size \%2

One significant consequence of the equivalence of norms is that, in R", convergence
is independent of the norm. The following are all equivalent to the standard notion of
convergence of a sequence u™, u® u®, .. of vectors in R":

(a) the vectors converge: u®) —; u*:
(k)

(b) the individual coordinates all converge: w;”" — w} fori=1,...,n.

(¢) the difference in norms goes to zero: ||[u®) —u* | — 0.

The last version, known as convergence in norm, does not depend on which norm is chosen.
Indeed, the inequality (3.35) implies that if one norm goes to zero, so does any other
norm. A consequence is that all norms on R™ induce the same topology — convergence
of sequences, notions of open and closed sets, and so on. None of this is true in infinite-
dimensional function space! A rigorous development of the underlying topological and
analytical properties of compactness, continuity, and convergence is beyond the scope of
this course. The motivated student is encouraged to consult a text in real analysis, e.g.,
[19, 68], to find the relevant definitions, theorems, and proofs.
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Example 3.19. Consider the infinite-dimensional vector space C°[0, 1] consisting of all

continuous functions on the interval [0, 1]. The functions

1-— , 0<
fn(l‘)—{ " 1<

have identical L> norms

[ fnllso =sup{|fp(x)|[ 0<z<1}=1
On the other hand, their L? norm

1 1/n
||fn||2—\//0 fn(:v)2dx—\//0 <1-m>zdx—¢%

goes to zero as n — co. This example shows that there is no constant C* such that

[ flloe < C7ILFAl

for all f € CY[0,1]. Thus, the L> and L? norms on C°[0, 1] are not equivalent — there
exist functions that have unit L> norm, but arbitrarily small L? norm. Similar comparative
results can be established for the other function space norms. Analysis and topology on
function space is intimately linked to the underlying choice of norm.

Exercises

3.3.31. Check the validity of the inequalities (3.38) for the particular vectors
(@) (L,-1)T, ) (1,2,3)T, (o) (1,1,1,1)T, () (1,-1,-2,—1,1)7.
3.3.32. Find all v € R? such that
@ IVl =1Vl B) IVIL=1vIz: (©) IVIz =1Vl (@) 1Vl =5 IVIa-
3.3.33. How would you quantify the following statement: The norm of a vector is small if and
only if all its entries are small.

3.3.34. Can you find an elementary proof of the inequalities || v < ||[v]y < Vn || vl for
v € R" directly from the formulas for the norms?

3.3.35. (i) Show the equivalence of the Euclidean norm and the 1 norm on R™ by proving
vl < vy < Vn||v|y. (4) Verify that the vectors in Exercise 3.3.31 satisfy both
inequalities. (¢ii) For which vectors v.e R™ is (a) ||[v]ly = VI[1? (b) ||V =7 |[v]5?

3.3.36. (i) Establish the equivalence inequalities (3.35) between the 1 and co norms.
(i) Verify them for the vectors in Exercise 3.3.31.
(#¢) For which vectors v € R™ are your inequalities equality?

3.3.37. Let |- ||y denote the usual Euclidean norm on R"™. Determine the constants in the norm
equivalence inequalities ¢ | v|| < ||v]l, < C* ||v]| for the following norms: (a) the weighted

norm ||v|| =/2v? + 3v3, (b) the norm ||v| = max{ |v; + vy ], | vy — vy | }

3.3.38. Let ||-|| be a norm on R™. Prove that there is a constant C' > 0 such that the entries of
every v = (vy,0q,...,0, )T € R™ are all bounded, in absolute value, by |v; | < C'||v]|.

3.3.39. Prove that if [a,b] is a bounded interval and f € C°[a,b], then Nflle <vVb—allflls-
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Q© 3.3.40. In this exercise, the indicated function norms are taken over all of R.

() Let fy (@)= { ~ TS
& Lot Inl®) = 0, otherwise.

(b) Explain why there is no constant C such that || f||5 < C|| f||o for all functions f.

Prove that || f,, || = 1, but || f,, |l = o0 as n — oo.

n 1 1
G
(¢) Let f,(z) = 2’ n =" Prove that | follg =1, but || f,, oo = o0
0, otherwise.

as n — oo. Conclude that there is no constant C' such that || f|o < C| f|l5-
(d) Construct similar examples that disprove the related inequalities

() I lloe <CUFl G NIl SCUSles i) [1Flla < CUFIL-

© 3.3.41.(a) Prove that the L™ and L? norms on the vector space C°[—1,1] are not equivalent.
Hint: Look at Exercise 3.3.40 for ideas. (b) Can you establish a bound in either direction,
e, [ fll SClfllgor £l < Clflly forall fe CY[—1,1] for some positive constants
C,C? (c¢) Are the L' and L™ norms equivalent?

¢ 3.3.42. What does it mean if the constants defined in (3.36) are equal: ¢* = C*?

3.3.43. Suppose (v,w); and (v, w ), are two inner products on the same vector space V. For
which «, 8 € R is the linear combination (v ,w) = a(v,w); + B(v,w), a legitimate
inner product? Hint: The case o, 8 > 0 is easy. However, some negative values are also
permitted, and your task is to decide which.

¢ 3.3.44. Suppose |- ||1, |||l are two norms on R™. Prove that the corresponding matrix norms
satisfy ¢*|| A|l; < ||All, < C*||A||; for any n x n matrix A for some positive constants
0<er <C™

Matrix Norms

Each norm on R™ will naturally induce a norm on the vector space M, ., of all n x n
matrices. Roughly speaking, the matrix norm tells us how much a linear transformation
stretches vectors relative to the given norm. Matrix norms will play an important role
in Chapters 8 and 9, particularly in our analysis of linear iterative systems and iterative
numerical methods for solving both linear and nonlinear systems.

We work exclusively with real nxn matrices in this section, although the results straight-
forwardly extend to complex matrices. We begin by fixing a norm ||-|| on R™. The norm
may or may not come from an inner product — this is irrelevant as far as the construction
goes.

Theorem 3.20. If ||-|| is any norm on R™, then the quantity
[A]l=max{|Au] | [[ull=1} (3-39)

defines the norm of an n X n matrix A € M called the associated natural matriz norm.

nxn’

Proof: First note that || A|| < oo, since the maximum is taken on a closed and bounded
subset, namely the unit sphere S; = {||u|| =1} for the given norm. To show that (3.39)
defines a norm, we need to verify the three basic axioms of Definition 3.12.

Non-negativity, || A|| > 0, is immediate. Suppose || A|| = 0. This means that, for every
unit vector, ||Aul|| = 0, and hence Au = 0 whenever ||u|| =1. If 0 # v € R" is any
nonzero vector, then u = v/r, where r = || v ||, is a unit vector, so

Av=A(ru)=rAu=0. (3.40)
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Therefore, Av = 0 for every v € R™, which implies that A = O is the zero matrix. This
serves to prove the positivity property: ||A| = 0 if and only if A = O.

As for homogeneity, if ¢ € R is any scalar, then
[cAll =max {|[cAul| } = max {[c|[[Aul| } = |c[ max { || Aul|} = [c[[| Al

Finally, to prove the triangle inequality, we use the fact that the maximum of the sum of
quantities is bounded by the sum of their individual maxima. Therefore, since the norm
on R™ satisfies the triangle inequality,

[A+ Bl = max { || Au+ Bu| } <max {|[Auf/ + | Bu] }

Q.E.D.
< max { || Aul| } + max {||Bul| } = [|A[| + || B||.

The property that distinguishes a matrix norm from a generic norm on the space of
matrices is the fact that it also obeys a very useful product inequality.

Theorem 3.21. A natural matrix norm satisfies

JAv]| < |All|lv], forall AeM v ER™. (3.41)

nxn?

Furthermore,

|AB||<||A|BJ, forall A BeM (3.42)

nxn'

Proof: Note first that, by definition || Au]|| < || A|| for all unit vectors ||u|| = 1. Then,
letting v = ru where u is a unit vector and r = || v||, we have

[Av] =[[A(ru)|| =r[Aul| <[ Al =[v] Al
proving the first inequality. To prove the second, we apply the first, replacing v by B u:

| A Bl = max {[[ABu|} = max { || A(Bu) |}
<max {[|[A[[|Bul[} = [|A]| max { || Bu] } = [[A[[|| B]- Q.E.D.

Remark. In general, a norm on the vector space of n x n matrices is called a matriz norm
if it also satisfies the multiplicative inequality (3.42). Most, but not all, matrix norms used
in applications come from norms on the underlying vector space.

The multiplicative inequality (3.42) implies, in particular, that || A% | < || A||%; equality
is not necessarily valid. More generally:

Proposition 3.22. If A is a square matrix, then || A% || < || A

Let us determine the explicit formula for the matrix norm induced by the co norm

[V loe = max{[v, [, ..., o, |}

The corresponding formula for the 1 norm is left as Exercise 3.3.48. The formula for the
Euclidean matrix norm (2 norm) will be deferred until Theorem 8.71.
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Definition 3.23. The ith absolute row sum of a matrix A is the sum of the absolute values
of the entries in the it? row:

n
Si:|ai1|+"'+|ain|:Z|aij|' (3.43)
j=1

Proposition 3.24. The oo matriz norm of a matrix A is equal to its maximal absolute
row sum:

n
| Al = max{s,,...,s,} = max Z|aij| 1<i<n ;. (3.44)
j=1

Proof: Let s = max{s;,...,s,} denote the right-hand side of (3.44). Given any v € R",
we compute the co norm of the image vector Av:

n n
|Av] = max Z a;;v; < max Z la; v, |

i=1 i=1

n
< max Z la; | maX{|Uj\}:3||V||oo~
j=1

In particular, by specializing to a unit vector, ||v|,, = 1, we deduce that |[[A| < s.
On the other hand, suppose the maximal absolute row sum occurs at row i, so

s; = Z la;;|=s. (3.45)

J=1

Let u € R™ be the specific vector that has the following entries: u; = +1 if a;; > 0, while

. B . - i .
u; = —1ifa;; <0. Then [|ul|, = 1. Moreover, since a;;u; = |a;; |, the i*h entry of Au is

equal to the ith absolute row sum (3.45). This implies that || A| > ||Au||, > s. Q.E.D.

1 _ 1
Example 3.25. Consider the symmetric matrix A = < f i’) Its two absolute
3 1
1 1 5 1 1 7 5 7 5
rowsumsare|§‘+|—§‘=g, ’—§|+‘Z|:§,SO ||A||Oo:max{g,ﬁ}:g.
Exercises
3.3.45. Compute the co matrix norm of the following matrices.
11 50 4 0o .1 8 £ 00
@ |7 1) O 2 2] (-1 0 .1), (d -5 0}
3 6 6 6 -8 —-1 0 0 % %

3.3.46. Find a matrix A such that || A% lloo # I A Hgo

3.3.47. True or false: If B = S™1AS are similar matrices, then || Blloo = 1Allo-

¢ 3.3.48. (i) Find an explicit formula for the 1 matrix norm || A|l;.
(it) Compute the 1 matrix norm of the matrices in Exercise 3.3.45.
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3.3.49. Prove directly from the axioms of Definition 3.12 that (3.44) defines a norm on the
space of n X n matrices.

1 1
1 -2

norm ||v|| = max{2|v; |,3]|vy|}; (b) the weighted 1 norm ||v| =2|v; |+ 3| vy |.

n
© 3.3.51. The Frobenius norm of an n x n matrix A is defined as [|A||p = | > a?j .
\ij=1

Prove that this defines a matrix norm by checking the three norm axioms plus the
multiplicative inequality (3.42).

3.3.50. Let A = ( ) . Compute the natural matrix norm || A|| for (a) the weighted oo

3.3.52. Explain why [| A|| = max |a,; | defines a norm on the space of n x n matrices. Show by
example that this is not a matrix norm, i.e., (3.42) is not necessarily valid.

3.4 Positive Definite Matrices

Let us now return to the study of inner products and fix our attention on the finite-
dimensional situation. Our immediate goal is to determine the most general inner prod-
uct that can be placed on the finite-dimensional vector space R™. The answer will lead
us to the important class of positive definite matrices, which appear in a wide range of
applications, including minimization problems, mechanics, electrical circuits, differential
equations, statistics, and numerical methods. Moreover, their infinite-dimensional coun-
terparts, positive definite linear operators, govern most boundary value problems arising
in continuum physics and engineering.

Suppose we are given an inner product (x,y) between vectors x = (z, 2y ...z, )"

andy = (y; ¥y ... Y, )T in R™. Our goal is to determine its explicit formula. We begin
by writing the vectors in terms of the standard basis vectors (2.17):

X=x,€ + - +xnenzz z;e,;, y=vy,e + - +ynenzz y;e;. (3.46)
i=1 j=1

To evaluate their inner product, we will appeal to the three basic axioms. We first employ
bilinearity to expand

(x,y)= <Z r;€;, Z yjej>: Z xiyj<eivej>'

i=1 j=1 =1
Therefore,
n
(x,y)= Z kijmiyjszKy, (3.47)
=1
where K denotes the n x n matrix of inner products of the basis vectors, with entries

k.= (e, e.), ihj=1,...,n. (3.48)

iJ PR

We conclude that any inner product must be expressed in the general bilinear form (3.47).
The two remaining inner product axioms will impose certain constraints on the inner
product matrix K. Symmetry implies that

kij=(e;,e;)=(e;, e )=k, ,j=1,...,n.
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Consequently, the inner product matrix K must be symmetric:
K=K
Conversely, symmetry of K ensures symmetry of the bilinear form:
(x,y)=x"Ky=x'Ky)' =y"K'x=y"Kx=(y,x),

where the second equality follows from the fact that the quantity x” Ky is a scalar, and
hence equals its transpose.
The final condition for an inner product is positivity, which requires that

n
x> =(x,x)=x"Kx = Z kijo,z; >0 for all x € R", (3.49)
hj=1
with equality if and only if x = 0. The precise meaning of this positivity condition on the
matrix K is not so immediately evident, and so will be encapsulated in a definition.

Definition 3.26. An nxn matrix K is called positive definite if it is symmetric, K” = K,
and satisfies the positivity condition

xTKx>0 forall 0#x¢cR" (3.50)

We will sometimes write K > 0 to mean that K is a positive definite matrix.

Warning. The condition K > 0 does not mean that all the entries of K are positive. There
are many positive definite matrices that have some negative entries; see Example 3.28
below. Conversely, many symmetric matrices with all positive entries are not positive
definite!

Remark. Although some authors allow non-symmetric matrices to be designated as pos-
itive definite, we will say that a matrix is positive definite only when it is symmetric.
But, to underscore our convention and remind the casual reader, we will often include the
superfluous adjective “symmetric” when speaking of positive definite matrices.

Our preliminary analysis has resulted in the following general characterization of inner
products on a finite-dimensional vector space.

Theorem 3.27. Every inner product on R"™ is given by
(x,y)=x'Ky for x,y € R", (3.51)
where K is a symmetric, positive definite n x n matrix.

Given a symmetric matrix K, the homogeneous quadratic polynomial
n
¢(x) =x"Kx = Z kijx;xj, (3.52)
hj=1
is known as a quadratic form' on R™. The quadratic form is called positive definite if
q(x) >0 for all 0#£xeR™ (3.53)

So the quadratic form (3.52) is positive definite if and only if its coefficient matrix K is.

T Exercise 3.4.15 shows that the coefficient matrix K in any quadratic form can be taken to be
symmetric without any loss of generality.
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4 -2 .
_9 3) has two negative

entries, it is, nevertheless, a positive definite matrix. Indeed, the corresponding quadratic
form

Example 3.28. Even though the symmetric matrix K = <

q(x) =xTKx =42} — 4z, 2y + 325 = (22, — 25)* + 225 >0
is a sum of two non-negative quantities. Moreover, ¢(x) = 0 if and only if both 2z, —z, = 0

and z, = 0, which implies z; = 0 also. This proves ¢(x) > 0 for all x # 0, and hence K is
indeed a positive definite matrix. The corresponding inner product on R? is

4 -2
(x,y)=(z; 25) (2 3> (g;) =4x1y; — 22,y — 225y, +3%5Ys-
On the other hand, despite the fact that K = 1

2 ... L
) has all positive entries, it is not
a positive definite matrix. Indeed, writing out

1

q(x) =x"Kx =22 + 4z, 2, + 23,

we find, for instance, that ¢(1,—1) = —2 < 0, violating positivity. These two simple
examples should be enough to convince the reader that the problem of determining whether
a given symmetric matrix is positive definite is not completely elementary.

Example 3.29. By definition, a general symmetric 2 x 2 matrix K = ((; l;) is positive
definite if and only if the associated quadratic form satisfies
q(x) = ax? +2bx, xy +ca3 >0 for all x # 0. (3.54)
Analytic geometry tells us that this is the case if and only if
a >0, ac—b?>0, (3.55)

i.e., the quadratic form has positive leading coefficient and positive determinant (or negative
discriminant). A direct proof of this well-known fact will appear shortly.

With a little practice, it is not difficult to read off the coefficient matrix K from the
explicit formula for the quadratic form (3.52).

Example 3.30. Consider the quadratic form

q(z,y,2) =2* +4zy +69° — 222+ 92>

depending upon three variables. The corresponding coefficient matrix is

1 2 -1 1 2 -1 T
K= 2 6 0 whereby q(z,y,z)=(z y z) 2 6 0 y
-1 0 9 -1 0 9 z

Note that the squared terms in ¢ contribute directly to the diagonal entries of K, while
the mixed terms are split in half to give the symmetric off-diagonal entries. As a challenge,
the reader might wish to try proving that this particular matrix is positive definite by
establishing positivity of the quadratic form: ¢(z,y, z) > 0 for all nonzero (z,y, z )T € R3.
Later, we will devise a simple, systematic test for positive definiteness.

Slightly more generally, a quadratic form and its associated symmetric coefficient matrix
are called positive semi-definite if

¢x)=x"Kx>0 for all x € R, (3.56)
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in which case we write K > 0. A positive semi-definite matrix may have null directions,
meaning non-zero vectors z such that ¢(z) = z7 Kz = 0. Clearly, every nonzero vector
z € ker K that lies in the coefficient matrix’s kernel defines a null direction, but there
may be others. A positive definite matrix is not allowed to have null directions, and so
ker K = {0}. Recalling Proposition 2.42, we deduce that all positive definite matrices are
nonsingular. The converse, however, is not valid; many symmetric, nonsingular matrices
fail to be positive definite.

Proposition 3.31. If a matrix is positive definite, then it is nonsingular.

Example 3.32. The matrix K = _i _}> is positive semi-definite, but not positive

definite. Indeed, the associated quadratic form
¢x) =x"Kx =2 - 22,2, + 23 = (1, — 25)*> >0

is a perfect square, and so clearly non-negative. However, the elements of ker K, namely
the scalar multiples of the vector (1,1 )T, define null directions: ¢(c,c) = 0.

In a similar fashion, a quadratic form ¢(x) = x” K x and its associated symmetric matrix
K are called negative semi-definite if g(x) < 0 for all x and negative definite if q(x) < 0
for all x # 0. A quadratic form is called indefinite if it is neither positive nor negative
semi-definite, equivalently, if there exist points x, where g(x ) > 0 and points x_ where
q(x_) < 0. Details can be found in the exercises.

Only positive definite matrices define inner products. However, indefinite matrices
play a fundamental role in Einstein’s theory of special relativity, [55]. In particular, the
quadratic form associated with the matrix

2 0 00 t
10 1.0 0 T 2,2 2 2 2 _|*
K= 0 0 1 0 namely ¢(x)=x" Kx=ct*—12° —y° —2° where x= )
0 0 0 1 z

(3.57)

with ¢ representing the speed of light, is the so-called Minkowski “metric” on relativistic
space-time R*. The null directions form the light cone; see Exercise 3.4.20.

Exercises
3.4.1. Which of the following 2 x 2 matrices are positive definite?

@ (5 5) ®(o)©Gi) @G 3)w(a5) o)

In the positive definite cases, write down the formula for the associated inner product.

% §> Prove that the associated quadratic form ¢(x) = xT K x is indefinite

by finding a point xT where ¢(x™) > 0 and a point x~ where ¢(x~) < 0.

3.4.2. Let K = (

& 3.4.3.(a) Prove that a diagonal matrix D = diag (¢, ¢, ..,¢,) is positive definite if and only
if all its diagonal entries are positive: ¢; > 0. (b) Write down and identify the associated

inner product.

3.4.4. Write out the Cauchy—Schwarz and triangle inequalities for the inner product defined in
Example 3.28.
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¢ 3.4.5.(a) Show that every diagonal entry of a positive definite matrix must be positive.
(b) Write down a symmetric matrix with all positive diagonal entries that is not positive
definite. (c¢) Find a nonzero matrix with one or more zero diagonal entries that is positive
semi-definite.

3.4.6. Prove that if K is any positive definite matrix, then every positive scalar multiple ¢ K,
¢ > 0, is also positive definite.

{ 3.4.7.(a) Show that if K and L are positive definite matrices, so is K + L. (b) Give an
example of two matrices that are not positive definite whose sum is positive definite.

3.4.8. Find two positive definite matrices K and L whose product K L is not positive definite.

3.4.9. Write down a nonsingular symmetric matrix that is not positive or negative definite.

{ 3.4.10. Let K be a nonsingular symmetric matrix. (a) Show that xT'K~'x = y' Ky, where
Ky =x. (b) Prove that if K is positive definite, then so is K 1.

{ 3.4.11. Prove that an n x n symmetric matrix K is positive definite if and only if, for every
0 # v € R”, the vectors v and Kv meet at an acute Euclidean angle: |6| < %ﬂ.

{ 3.4.12. Prove that the inner product associated with a positive definite quadratic form ¢(x) is
. o 1
given by the polarization formula (x,y) = 3 [q(x +y)—qx) —qly) ]

3.4.13.(a) Is it possible for a quadratic form to be positive, q(x+) > 0, at only one point
x, € R"? (b) Under what conditions is g(x,) = 0 at only one point?

{ 3.4.14.(a) Let K and L be symmetric n X n matrices. Prove that xTKx = xTLx for all

x € R™ if and only if K = L. (b) Find an example of two non-symmetric matrices K # L
such that x’ Kx = x” Lx for all x € R™.
n
¢ 3.4.15. Suppose ¢q(x) = xTAx = > QT T is a general quadratic form on R"™, whose
ij=1
coefficient matrix A is not necessarily symmetric. Prove that ¢(x) = x'K x, where
K = % (A+ AT) is a symmetric matrix. Therefore, we do not lose any generality by

restricting our discussion to quadratic forms that are constructed from symmetric matrices.

3.4.16.(a) Show that a symmetric matrix N is negative definite if and only if K = — N is
positive definite. (b) Write down two explicit criteria that tell whether a 2 x 2 matrix

N = (Z lc)) is negative definite. (c¢) Use your criteria to check whether

(%) <_i _é), (i) (:g :2), (444) <:i’ _é) are negative definite.

1

3.4.17. Show that x = <1 )

1> is a null direction for K = <

_g), but x & ker K.

3.4.18. Explain why an indefinite quadratic form necessarily has a non-zero null direction.

3.4.19. Let K = KT. True or false: (a) If K admits a null direction, then ker K # {0}.
(b) If K has no null directions, then K is either positive or negative definite.

{ 3.4.20. In special relativity, light rays in Minkowski space-time R"™ travel along the light cone
which, by definition, consists of all null directions associated with an indefinite quadratic

form ¢(x) = xT Kx. Find and sketch a picture of the light cone when the coefficient matrix

1 0 1 2 1 0 0
Kis (a) <O _1>, (b) <2 3), (c) 8 —é (1) . Remark. In the physical

universe, space-time is n = 4-dimensional, and K is given in (3.57), [55].
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¢ 3.4.21. A function f(x) on R™ is called homogeneous of degree k if f(cx) = ¥ f(x) for all
scalars ¢. (a) Given a € R", show that the linear form (x) =a-x=ayz; +---+a,z, is
homogeneous of degree 1.  (b) Show that the quadratic form
n
¢x)=xTKx = > k;;x;x; is homogeneous of degree 2.
ij=1
(¢) Find a homogeneous function of degree 2 on R2 that is not a quadratic form.

Gram Matrices

Symmetric matrices whose entries are given by inner products of elements of an inner
product space will appear throughout this text. They are named after the nineteenth-
century Danish mathematician Jgrgen Gram — not the metric mass unit!

Definition 3.33. Let V be an inner product space, and let v, ..., v, € V. The associated
Gram matrix
(vi,vi) (vi,vy) oo (vy,vy,)
Vo,V Vo,V coe Vg,V
K- (vy 1>' (vy 2>. . (v, n> (3.58)
<Vn7vl> <anv2> <Vn7vn>

is the n x n matrix whose entries are the inner products between the selected vector space
elements.

Symmetry of the inner product implies symmetry of the Gram matrix:

— _ _ T _
kij=A(vi,v;)=(v;,v;) =k, and hence K' =K. (3.59)

In fact, the most direct method for producing positive definite and semi-definite matrices

is through the Gram matrix construction.

Theorem 3.34. All Gram matrices are positive semi-definite. The Gram matrix (3.58) is
positive definite if and only if v,,..., v, are linearly independent.

Proof: To prove positive (semi-)definiteness of K, we need to examine the associated quad-
ratic form

n
¢(x) =x"Kx = Z kijx;x;.

4,j=1

Substituting the values (3.59) for the matrix entries, we obtain

q(x) = Z <Vian>xi1“j-

i,j=1

Bilinearity of the inner product on V implies that we can assemble this summation into a
single inner product

q(x)—< Z v, , Z a:jvj>—<v,v>— [v|?*>0, where v = Z TV,
i=1 j=1 i=1

lies in the subspace of V' spanned by the given vectors. This immediately proves that K is
positive semi-definite.



162 3 Inner Products and Norms

Moreover, ¢(x) = ||v|? > 0 as long as v # 0. If v;,..., v, are linearly independent,
then
v=x,vy+ - +z,v, =0 if and only if = - =z, =0,

and hence ¢(x) = 0 if and only if x = 0. This implies that ¢(x) and hence K are positive

definite. Q.E.D.
1 3

Example 3.35. Consider the vectors v, = 2], vy =|0]. For the standard
-1 6

Euclidean dot product on R3, the Gram matrix is

Ko (Vi Vi Vitva) _ 6 -3
S \vyrvy veevy )\ =3 45 )
Since v, v, are linearly independent, K > 0. Positive definiteness implies that
q(xy,29) =627 — 62,25 + 4523 >0  for all (y,2,) # 0.

Indeed, this can be checked directly, by using the criteria in (3.55).
On the other hand, for the weighted inner product

(v,w) =3v,w; + 2vywy + Svgws, (3.60)

the corresponding Gram matrix is

P ((vive) (viva) 16 —21

K_<<V2’V1> <V2aV2> o\ —21 207 ) (3.61)
Since v, v, are still linearly independent (which, of course, does not depend upon which
inner product is used), the matrix K is also positive definite.

In the case of the Euclidean dot product, the construction of the Gram matrix K can
be directly implemented as follows. Given column vectors v,,...,v, € R™, let us form
the m x n matrix A = (vy v, ... v, ). In view of the identification (3.2) between the dot
product and multiplication of row and column vectors, the (i, 7) entry of K is given as the
product

_ T
kijfvi-vjfvivj

of the i*h row of the transpose A” and the j*® column of A. In other words, the Gram
matrix can be evaluated as a matrix product:

K = ATA. (3.62)
For the preceding Example 3.35,
1 3 1 3
A= 2 0], andso KzATA:(;’ g _é> 2 0 :(2 ;g’)
-1 6 -1 6

Theorem 3.34 implies that the Gram matrix (3.62) is positive definite if and only if the
columns of A are linearly independent vectors. This implies the following result.

Proposition 3.36. Given an m x n matrix A, the following are equivalent:
(a) The n x n Gram matrix K = ATA is positive definite.
(b) A has linearly independent columns.
(c) rank A =n < m.
(d) ker A = {0}.
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Changing the underlying inner product will, of course, change the Gram matrix. As
noted in Theorem 3.27, every inner product on R" has the form

(v,w)=vICw for v,w € R™, (3.63)

where C' > 0 is a symmetric, positive definite m x m matrix. Therefore, given n vectors
vy,...,V, € R™, the entries of the Gram matrix with respect to this inner product are
T
kij = <VZ-,Vj> =v,; C’vj.

If, as above, we assemble the column vectors into an m x n matrix A = (vy vy ... Vv, ),
then the Gram matrix entry k,; is obtained by multiplying the ith row of AT by the jth
column of the product matrix C'A. Therefore, the Gram matrix based on the alternative
inner product (3.63) is given by

K = ATCA. (3.64)

Theorem 3.34 immediately implies that K is positive definite — provided that the matrix
A has rank n.

Theorem 3.37. Suppose A is an m X n matrix with linearly independent columns. Sup-
pose C is any positive definite m x m matrix. Then the Gram matrix K = ATCA is a
positive definite n X n matrix.

The Gram matrices constructed in (3.64) arise in a wide variety of applications, including
least squares approximation theory (cf. Chapter 5), and mechanical structures and electrical
circuits (cf. Chapters 6 and 10). In the majority of applications, C' = diag (¢,,...,c,,) is a
diagonal positive definite matrix, which requires it to have strictly positive diagonal entries
¢; > 0. This choice corresponds to a weighted inner product (3.10) on R™.

Example 3.38. Returning to the situation of Example 3.35, the weighted inner product

3 00
(3.60) corresponds to the diagonal positive definite matrix C' = [ 0 2 0 |. Therefore,
0 0 5
1 3
the weighted Gram matrix (3.64) based on the vectors v; = 21, vp=10],is
-1 6
3 00 1 3
K—ATCA—G) g _é> 020 2 0 —<_£ ;g;)
0 0 5 -1 6

reproducing (3.61).

The Gram matrix construction is not restricted to finite-dimensional vector spaces, but
also applies to inner products on function space. Here is a particularly important example.

Example 3.39. Consider the vector space C°[0,1] consisting of continuous functions

1
on the interval 0 < x < 1, equipped with the L? inner product { f,g) = / f(z) g(x)dz.
0

Let us construct the Gram matrix corresponding to the simple monomial functions 1, z, 2.
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We compute the required inner products

1
<171>:|1|2=/0 dr =1,

—~
—_
S

Il
c\
=

S

QU

S

Il
DO | —

! 1 ! 1
(x,x>:\|x||2:/ 22 de = -, (1,3:2):/ 2 de = =,
0 3 0 3
! 1 b 1
(xQ,m2>:Hx2||2:/ otde = -, (x,x2>:/ wddr = —.
0 5 0 4
Therefore, the Gram matrix is

101

(1,1) (1,2) (1,2%) 1 5 3

_ — |1 1 1

K= <CL‘,1> <l‘,l‘> <£C,CL‘2> - 2 3 1

2 2 2 2 101 1

<‘T 71> <£L‘ ,Ll?) <l‘ y L > 3 4 5

As we know, the monomial functions 1, z, z? are linearly independent, and so Theorem 3.34
immediately implies that the matrix K is positive definite.

The alert reader may recognize this particular Gram matrix as the 3 x 3 Hilbert matrix
that we encountered in (1.72). More generally, the Gram matrix corresponding to the
monomials 1,z, 22, ... ,2" has entries

1

Erra— 5,7 =1,... 1
Z+]_17 Z?] ) 7n+ )

L)

1
ko= <xi71 ’xj71> _ / :EiJrj*Q do =
0

and is thus the (n + 1) x (n + 1) Hilbert matrix (1.72): K = H, ;. As a consequence of
Theorem 3.34 and Proposition 3.31 (and also Exercise 2.3.36), we have proved the following
non-trivial result.

Proposition 3.40. The n x n Hilbert matrix H, is positive definite. Consequently, H,,
is a nonsingular matrix.

Example 3.41. Let us construct the Gram matrix corresponding to the trigonometric

™
functions 1, cosx, sinz, with respect to the inner product ( f,g) = f(z)g(x)dr on
the interval [— 7, 7]. We compute the inner products -

(1,1>=H1H2:/ dx =2, (1,coszr:>=/ coszdr =0,

—T —T

s s

<cosx,cosx>=|\cosm||2=/ cos®> v dr =, <1,Sinx>:/ sina dz =0,

—r —
s T
(sinx,sina:>=|\sinx||2:/ sin? v dr = , <cosaj,sinm>:/ cosxsinzdxr = 0.
—r -
27 0 O
Therefore, the Gram matrix is a simple diagonal matrix: K =| 0 =« 0 |. Positive
definiteness of K is immediately evident. 0 0 =«

If the columns of A are linearly dependent, then the associated Gram matrix is only
positive semi-definite. In this case, the Gram matrix will have nontrivial null directions v,
so that 0 # v € ker K = ker A.
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Proposition 3.42. Let K = ATC A be the n x n Gram matrix constructed from an m xn
matrix A and a positive definite m x m matrix C' > 0. Then ker K = ker A, and hence
rank K = rank A.

Proof: Clearly, if Ax =0, then Kx = ATC Ax = 0, and so ker A C ker K. Conversely, if
Kx =0, then

0=x"Kx=x"ATCAx=y'Cy, where y=Ax.

Since C' > 0, this implies y = 0, and hence x € ker A. Finally, by Theorem 2.49, rank K =
n —dimker K = n — dimker A = rank A. Q.E.D.

Exercises

3.4.22.(a) Find the Gram matrix corresponding to each of the following sets of vectors using

the Euclidean dot product on R™. () <_§), (g), (44) <;>7 <_§), (:i),

(= OB 6 D))

1 -1 1 -2 -1 1 -2 -1 0
. 0 1 . 2 1 3 0 1 0 2
(i) L ol (wit) sl al | 21 ] (wiit) ol ol =1 | =3
0 1 4 3 —2 1 0 0 0
(b) Which are positive definite? (c¢) If the matrix is positive semi-definite, find all its null
directions.

3.4.23. Recompute the Gram matrices for cases (i77)—(v) in the previous exercise using the
weighted inner product (x,y) = Y, + 225y, + 3x5y3. Does this change its positive
definiteness?

3.4.24. Recompute the Gram matrices for cases (vi)—(viii) in Exercise 3.4.22 for the weighted
inner product (x,y) =,y + %wng + %1‘31/3 + %x4y4.

3.4.25. Find the Gram matrix K for the functions 1, e®, e?? using the L? inner product on
[0,1]. Is K positive definite?

1
3.4.26. Answer Exercise 3.4.25 using the weighted inner product (f,g) = /0 f(x)g(x) e * da.

3

3.4.27. Find the Gram matrix K for the monomials 1,z,z°, = using the L? inner product on

[—1,1]. Is K positive definite?
1
3.4.28. Answer Exercise 3.4.27 using the weighted inner product (f,g) = / ) f@)g(z) (1 +x)dx.

3.4.29. Let K be a 2 x 2 Gram matrix. Explain why the positive definiteness criterion (3.55) is
equivalent to the Cauchy—Schwarz inequality.

¢ 3.4.30.(a) Prove that if K is a positive definite matrix, then K2 is also positive definite.
(b) More generally, if S = ST is symmetric and nonsingular, then 52 is positive definite.

3.4.31. Let A be an m x n matrix. (a) Explain why the product L = AAT is a Gram matrix.
(b) Show that, even though they may be of different sizes, both Gram matrices K = ATA

and L = AAT have the same rank. (c) Under what conditions are both K and L positive
definite?
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& 3.4.32. Let K = ATC A, where C > 0. Prove that
(a) ker K = coker K =ker A;  (b) img K = coimg K = coimg A.

{ 3.4.33. Prove that every positive definite matrix K can be written as a Gram matrix.

3.4.34. Suppose K is the Gram matrix computed from v{,...,v, € V relative to a given inner
product. Let K be the Gram matrix for the same elements, but computed relative to a

different inner product. Show that K > 0 if and only if K > 0.

& 3.4.35. Let Ky = AF{C1 A, and K, = A;FC’2 A, be any two n X n Gram matrices. Let
K = K, + K,. (a) Show that if K|, K, > 0 then K > 0. (b) Give an example in which K,
and K, are not positive definite, but K > 0. (¢) Show that K is also a Gram matrix, by
finding a matrix A such that K = ATC A. Hint: A will have size (my +my) X n, where m,
and m, are the numbers of rows in A, A,, respectively.

3.4.36. Show that 0 # z is a null direction for the quadratic form ¢(x) = x? K x based on the
Gram matrix K = ATC A if and only if z € ker K.

3.5 Completing the Square

Gram matrices furnish us with an almost inexhaustible supply of positive definite matrices.
However, we still do not know how to test whether a given symmetric matrix is positive
definite. As we shall soon see, the secret already appears in the particular computations
in Examples 3.2 and 3.28.

You may recall the algebraic technique known as “completing the square”, first arising
in the derivation of the formula for the solution to the quadratic equation

q(z) = a2’ +2bx+c=0, (3.65)

and, later, helping to facilitate the integration of various types of rational and algebraic
functions. The idea is to combine the first two terms in (3.65) as a perfect square, and
thereby rewrite the quadratic function in the form

2 72
q(z) =a (.I‘ + b) y o L 0. (3.66)
a a

As a consequence,

The familiar quadratic formula

= bE VY —ac
v a
follows by taking the square root of both sides and then solving for . The intermediate
step (3.66), where we eliminate the linear term, is known as completing the square.
We can perform the same kind of manipulation on a homogeneous quadratic form

q(zy,25) = ax? +2bx, 2y + cx3. (3.67)
In this case, provided a # 0, completing the square amounts to writing

2
ac—b
2 _ 2 2
Ty =ay; + u Y-

(3.68)

ac— b2

b 2
q(z),29) = ax? +2bx 2y +cr3 =a <ml + Y 1:2> +
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The net result is to re-express ¢(x,,z,) as a simpler sum of squares of the new variables
b
Y =x + a Lo, Yo = Zy- (3.69)

It is not hard to see that the final expression in (3.68) is positive definite, as a function of
Y1, Yo, if and only if both coefficients are positive:

ac—b?

a

a >0, > 0. (3.70)

Therefore, g(z,,z,) > 0, with equality if and only if y;, = y, = 0, or, equivalently, z; =
x4 = 0. This conclusively proves that conditions (3.70) are necessary and sufficient for the
quadratic form (3.67) to be positive definite.

Our goal is to adapt this simple idea to analyze the positivity of quadratic forms de-
pending on more than two variables. To this end, let us rewrite the quadratic form identity
(3.68) in matrix form. The original quadratic form (3.67) is

q(x) = x"Kx, where K = (a b> , X = <x1 ) (3.71)
b ¢ Z,
Similarly, the right-hand side of (3.68) can be written as
0
q(y)=y"Dy, where D= <a acb2>a y = (y1> (3.72)
0 a Ya

Anticipating the final result, the equations (3.69) connecting x and y can themselves be
written in matrix form as

b b
y=L"x or <y1> = ($1+a$2>, where =1 a).

Substituting into (3.72), we obtain
yIDy = (L"x)"D (L"x) =x"LD L"x = x" K x, where K =LDL". (3.73)

The result is the same factorization (1.61) of the coefficient matrix that we previously
obtained via Gaussian Elimination. We are thus led to the realization that completing the
square is the same as the LD LT factorization of a symmetric matriz!

Recall the definition of a regular matrix as one that can be reduced to upper triangular
form without any row interchanges. Theorem 1.34 says that the regular symmetric matrices
are precisely those that admit an L D LT factorization. The identity (3.73) is therefore valid
for all regular n x n symmetric matrices, and shows how to write the associated quadratic
form as a sum of squares:

¢(x)=x"Kx=y"Dy=d,y? + - +d, 2, where y = LTx. (3.74)

The coefficients d; are the diagonal entries of D, which are the pivots of K. Furthermore,
the diagonal quadratic form is positive definite, y?’ Dy > 0 for all y # 0, if and only if
all the pivots are positive, d; > 0. Invertibility of L tells us that y = 0 if and only
if x = 0, and hence, positivity of the pivots is equivalent to positive definiteness of the
original quadratic form: ¢(x) > 0 for all x # 0. We have thus almost proved the main
result that completely characterizes positive definite matrices.

Theorem 3.43. A symmetric matrix is positive definite if and only if it is regular and has
all positive pivots.
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Equivalently, a square matrix K is positive definite if and only if it can be factored
K = LDLT, where L is lower unitriangular and D is diagonal with all positive diagonal
entries.

1 2 -1
Example 3.44. Consider the symmetric matrix K = 2 6 0 |. Gaussian Elim-
ination produces the factors -1 0 9
1 0 0 1 0 0 1 2 -1
L= 2 1 0], D=|0 2 0], Y=o 1 1],
-1 1 1 0 0 6 0 0 1

in its factorization K = L D L”. Since the pivots — the diagonal entries 1,2, and 6 in D
— are all positive, Theorem 3.43 implies that K is positive definite, which means that the
associated quadratic form satisfies

q(x) =27+ 4z 29 — 22,75 + 625 + 923 > 0, for all X:(xl,xQ,xg)T7é0.

Indeed, the L DLT factorization implies that ¢(x) can be explicitly written as a sum of
squares:
q(x) =23 +da 2y — 22,25 + 623 + 923 = 97 + 293 + 63, (3.75)
where
Yy =%y + 225 — T3, Yp = Ty + T3, Y3 = T3,
are the entries of y = LTx. Positivity of the coefficients of the y? (which are the pivots)
implies that ¢(x) is positive definite.

1 2 3
Example 3.45. Let’s test whether the matrix K = | 2 3 7 | is positive definite.
3 7 8
When we perform Gaussian Elimination, the second pivot turns out to be —1, which
immediately implies that K is not positive definite — even though all its entries are positive.
(The third pivot is 3, but this does not affect the conclusion; all it takes is one non-positive
pivot to disqualify a matrix from being positive definite. Also, row interchanges aren’t of
any help, since we are not allowed to perform them when checking for positive definiteness.)
This means that the associated quadratic form

q(x) = 2% + 4w vy + 62,24 + 322+ 1dayxg + 823
assumes negative values at some points. For instance, ¢(—2,1,0) = —1.

A direct method for completing the square in a quadratic form goes as follows: The first
step is to put all the terms involving z, in a suitable square, at the expense of introducing
extra terms involving only the other variables. For instance, in the case of the quadratic
form in (3.75), the terms involving z; can be written as

o]+ 4z, Ty — 27,25 = () + 20y — 33)% — 425 + dwy3s — 73,
Therefore,
q(x) = (1 + 225 — 13)° + 205 + 4z 25 + 823 = (21 + 225 — 23)” + §(25, 25),

where
q(2g, 25) = 223 + 42y 2y + 823
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is a quadratic form that involves only x,,x5. We then repeat the process, combining all
the terms involving x, in the remaining quadratic form into a square, writing

q(xy, 73) = 2(xy + 73)% + 623
This gives the final form
q(x) = (x; + 22y — 23)* + 2(xy + 25)* + 622,

which reproduces (3.75).
In general, as long as k;; # 0, we can write

q(x):xTKx:kllx%+2k:12mla:2+ —l—lenxla?n—i-szmg—l— —b—k’nnmi

k k S
=k <JJ1+12$2+ —I—lnxn) +q(zy, ..., x,) (3.76)
ki1 k14
=kyy (2 +lyyxg+ o0 + 1y mn)Q +q(@y, ... 2,),
where
L, = M _ ki L T
ke by " kiy K1y

are precisely the multiples appearing in the matrix L obtained from applying Gaussian
Elimination to K, while

n
4(zy,...,x,) = E ko z;
=2
is a quadratic form involving one less variable. The entries of its symmetric coefficient
matrix K are

7 7 kl'kli
hyy = ki =k — Ly by = by — —2—

(%] Jt 1] 7:,]':2,...71,

which are exactly the same as the entries appearing below and to the right of the first
pivot after applying the the first phase of the Gaussian Elimination process to K. In
particular, the second pivot of K is the diagonal entry k,,. We continue by applying the
same procedure to the reduced quadratic form ¢(z,,...,, ) and repeating until only the
final variable remains. Completing the square at each stage reproduces the corresponding
phase of the Gaussian Elimination process. The final result is our formula (3.74) rewriting
the original quadratic form as a sum of squares whose coefficients are the pivots.

With this in hand, we can now complete the proof of Theorem 3.43. First, if the upper
left entry k,,, namely the first pivot, is not strictly positive, then K cannot be positive
definite, because g(e;) = el Ke, = k,; < 0. Otherwise, suppose k;; > 0, and so we can
write ¢(x) in the form (3.76). We claim that ¢(x) is positive definite if and only if the
reduced quadratic form ¢(z,,...,z,,) is positive definite. Indeed, if ¢ is positive definite
and ky; > 0, then ¢(x) is the sum of two positive quantities, which simultaneously vanish
if and only if ; = 2, = --- = x,, = 0. On the other hand, suppose ¢(z3,...,z}) < 0 for
some x5, ..., ), not all zero. Setting 7 = —ly; x5 — --- —{ ; =} makes the initial square
term in (3.76) equal to 0, so

q(xi(,$§7,$2) = a(.f;, . 71’;) <0,

proving the claim. In particular, positive definiteness of ¢ requires that the second pivot

satisfy k,, > 0. We then continue the reduction procedure outlined in the preceding



170 3 Inner Products and Norms

paragraph; if a non-positive entry appears in the diagonal pivot position at any stage, the
original quadratic form and matrix cannot be positive definite. On the other hand, finding
all positive pivots (without using any row interchanges) will, in the absence of numerical

errors, ensure positive definiteness. Q.E.D.
Exercises
. . . . 4 -2 1 1
3.5.1. Are the following matrices are positive definite? (a) ( 9 ), (b) (1 1),
L1 Lo L2111 a1
@ 12 1], @1 2 —2]| L (f)
9 1 1 1 _9 4 1 1 2 1 1 1 -1 1
1 1 1 2 1 1 1 -1

3.5.2. Find an LD L” factorization of the following symmetric matrices. Which are positive

3 -1 3 -2 1 -1
5_1,(:—1 5 11, (d 1 -2 1],
<_1 3>()(3 D) T

(=)
=

definite? (a) (; g) (

9 1 —9 11 1 0 3 2 10 2 1 -2 0
1 2 0 1 2 3 01 1 1 -3 2
(e)(; 711)’ _ﬁ’) Ol1 01 1] @103 2™ 2 3 10 1
01 1 2 01 2 3 0 2 -1 7
1 1 0
3.5.3.(a) For which values of ¢ is the matrix A = [ 1 ¢ 1 | positive definite? (b) For the
0 1 1

particular value ¢ = 3, carry out elimination to find the factorization A = LDLT. (c) Use
your result from part (b) to rewrite the quadratic form ¢(z,y, z) = 2° +2zy+3y>+2y 2+ 2>
as a sum of squares. (d) Explain how your result is related to the positive definiteness of A.

3.5.4. Write the quadratic form ¢(x) = x% +x 2, —1—290% -z T +3:1:§ in the form ¢(x) = xT K'x
for some symmetric matrix K. Is g(x) positive definite?

3.5.5. Write the following quadratic forms on R? as a sum of squares. Which are positive
definite? (a) 22 +8zy+1vy>%, (b) 2® —4xy+7y% (¢) 22 —2zy—vy?, (d) 2> +6zy.

3.5.6. Prove that the following quadratic forms on R? are positive definite by writing each as a
sum of squares: (a) 2?4+ 42z +3y% + 522, (b) 2?4+ 32y +3y> — 2wz + 822,
(c) Zx% + Ty — 2225 + Zx% —2zy a3+ 2w§.

3.5.7. Write the following quadratic forms in matrix notation and determine if they are positive
definite: (a) 22+ 4wz +29y% +8yz+ 1222, (b) 322 —2¢y% —8zy +x2+ 22,
(¢) 22 +2zy+2¢y% —4z2—6yz+622,  (d) 337% - :cg + 5:0% +dxixy — Txi25 + 92923,
(e) x% +4z 2y — 23 25+ 590% — 252, + 6x§ — gz, + 43:3.

3.5.8. For what values of a, b, and c is the quadratic form 2%+ ary + y2 +brz+cyz+ 22
positive definite?

3.5.9. True or false: Every planar quadratic form ¢(z,y) = az® + 2bry+ cy2 can be written as
a sum of squares.

3.5.10.(a) Prove that a positive definite matrix has positive determinant: det K > 0.
(b) Show that a positive definite matrix has positive trace: tr K > 0. (¢) Show that every
2 X 2 symmetric matrix with positive determinant and positive trace is positive definite.
(d) Find a symmetric 3 x 3 matrix with positive determinant and positive trace that is not
positive definite.
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3.5.11.(a) Prove that if K|, K, are positive definite n x n matrices, then K = (I(gl I(() )
2

is a positive definite 2n x 2n matrix. (b) Is the converse true?
3.5.12. Let ||-|| be any norm on R™. (a) Show that g(x) is a positive definite quadratic form
if and only if g(u) > 0 for all unit vectors, |[u|| = 1. (b) Prove that if $ = ST is any
symmetric matrix, then K =5+ ¢ 1 > 0 is positive definite if c is sufficiently large.
3.5.13. Prove that every symmetric matrix S = K + N can be written as the sum of a positive
definite matrix K and a negative definite matrix N. Hint: Use Exercise 3.5.12(b).
{ 3.5.14.(a) Prove that every regular symmetric matrix can be decomposed as a linear combination
K=d 1] +dyl,13 + - +4,1,17 (3.77)

of symmetric rank 1 matrices, as in Exercise 1.8.15, where 1;,...,1 are the columns of the
lower unitriangular matrix L and d, ..., d,, are the pivots, i.e., the diagonal entries of D.

1 2 1
Hint: See Exercise 1.2.34. (b) Decompose (_11 _}) and (2 6 1) in this manner.
1 1 4

© 3.5.15. There is an alternative criterion for positive definiteness based on subdeterminants of
the matrix. The 2 X 2 version already appears in (3.70). (a) Prove that a 3 x 3 matrix

a b ¢
K = (b d e) is positive definite if and only if a > 0, ad — b2 > 0, and det K > 0.

c e f
(b) Prove the general version: an n X n matrix K > 0 is positive definite if and only if its
upper left square k x k submatrices have positive determinant for all k =1,...,n.

Hint: See Exercise 1.9.17.

{ 3.5.16. Let K be a symmetric matrix. Prove that if a non-positive diagonal entry appears
anywhere (not necessarily in the pivot position) in the matrix during Regular Gaussian
Elimination, then K is not positive definite.

{ 3.5.17. Formulate a determinantal criterion similar to that in Exercise 3.5.15 for negative
definite matrices. Write out the 2 x 2 and 3 x 3 cases explicitly.

3.5.18. True or false: A negative definite matrix must have negative trace and negative
determinant.

The Cholesky Factorization

The identity (3.73) shows us how to write an arbitrary regular quadratic form ¢(x) as
a linear combination of squares. We can push this result slightly further in the positive
definite case. Since each pivot d; is positive, we can write the diagonal quadratic form
(3.74) as a sum of pure squares:

Ayt + - = (V) o+ (V) =2 2

where z; = \/@ y,;- In matrix form, we are writing

7(y)=y"'Dy =2"z=|z|?, where z=Sy, with S:diag<\/d1,...,\/dn).

Since D = S?%, the matrix S can be thought of as a “square root” of the diagonal matrix
D. Substituting back into (1.58), we deduce the Cholesky factorization

K=LDL" =LSSTLT = MM?”,  where M=LS, (3.78)

of a positive definite matrix, first proposed by the early twentieth-century French geogra-
pher André-Louis Cholesky for solving problems in geodetic surveying. Note that M is a
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lower triangular matrix with all positive diagonal entries, namely the square roots of the
pivots: m;; = \/d,. Applying the Cholesky factorization to the corresponding quadratic
form produces

x)=x"Kx=x"MM"x =2"2z = | z|? where z=M"x. (3.79)

We can interpret (3.79) as a change of variables from x to z that converts an arbitrary
inner product norm, as defined by the square root of the positive definite quadratic form
q(x), into the standard Euclidean norm ||z ||.

1 2 -1
Example 3.46. For the matrix K = 2 6 0 | considered in Example 3.44, the
-1 0 9
Cholesky formula (3.78) gives K = M M7T, where
1 0 0 1 0 0 1 0 0
M=LS=| 2 1 0 0 v2 0= 2 v2 0
-1 1 1 0 0 6 -1 V2 V6

The associated quadratic function can then be written as a sum of pure squares:
q(x) =27 + 4w 29 — 23 25 + 625 + 923 = 27 + 25 + 23,
where

z=MTx, or explicitly, 2 =z, +225 — 25, 2y =V2xy+ V21, 2z3=161,.

Exercises
3.5.19. Find the Cholesky factorizations of the following matrices: (a) (_g _§>,
4+ 1 Lo 211 L2110
(b) ;o (e |2 =2, (d |1 2 1, ()
—12 45 1 -2 14 11 9 01 2 1
00 1 2

3.5.20. Which of the matrices in Exercise 3.5.1 have a Cholesky factorization? For those that
do, write out the factorization.

3.5.21. Write the following positive definite quadratic forms as a sum of pure squares, as
in (3.79):  (a) 1627 4+ 2522, (b) a3 — 2x 2 + 423, (¢) 527 + 4, xy + 323,
(d) 323 — 2z 2y — 22, x3 + 212 + 6:r§, (e) z2 4 xyxy + 73 + ToTg + x%,

(f) 41:% -2z a9 — 4z 5+ %x% — Ty Ty +6m§,
(g) 333% +2z 2, + 3;1:% +2z514 + 3x§ +2z57, + 3xi.

3.6 Complex Vector Spaces

Although physical applications ultimately require real answers, complex numbers and com-
plex vector spaces play an extremely useful, if not essential, role in the intervening analysis.
Particularly in the description of periodic phenomena, complex numbers and complex ex-
ponentials help to simplify complicated trigonometric formulas. Complex variable methods
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z

Figure 3.7. Complex Numbers.

are ubiquitous in electrical engineering, Fourier analysis, potential theory, fluid mechanics,
electromagnetism, and many other applied fields, [49, 79]. In quantum mechanics, the ba-
sic physical quantities are complex-valued wave functions, [54]. Moreover, the Schrodinger
equation, which governs quantum dynamics, is an inherently complex partial differential
equation.

In this section, we survey the principal properties of complex numbers and complex
vector spaces. Most of the constructions are straightforward adaptations of their real
counterparts, and so will not be dwelled on at length. The one exception is the complex
version of an inner product, which does introduce some novelties not found in its simpler
real sibling.

Complex Numbers

Recall that a complex number is an expression of the form z = x + iy, where z,y € R are
real and’ i = y/—1. The set of all complex numbers (scalars) is denoted by C. We call
x = Re z the real part of z and y = Im z the imaginary part of z = x + iy. (Note: The
imaginary part is the real number y, not iy.) A real number x is merely a complex number
with zero imaginary part, Im z = 0, and so we may regard R C C. Complex addition and
multiplication are based on simple adaptations of the rules of real arithmetic to include
the identity i2 = —1, and so
(x4 1y)+ (u+iv) = (z+u) + i(y +v),
(z+1iy) (u+ iv) = (zu—yv) + i(zv+yu).
Complex numbers enjoy all the usual laws of real addition and multiplication, including
commutativity: zw = wz.
We can identify a complex number x + iy with a vector (m,y)T € R? in the real
plane. For this reason, C is sometimes referred to as the complex plane. Complex addition

(3.80) corresponds to vector addition, but complex multiplication does not have a readily
identifiable vector counterpart.

(3.80)

Another useful operation on complex numbers is that of complex conjugation.

Definition 3.47. The complex conjugate of z = x+iyisZ = x— iy, whereby Re Z = Re z,
while Im Z = — Im =z.

T To avoid confusion with the symbol for current, electrical engineers prefer to use j to indicate
the imaginary unit.
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Geometrically, the complex conjugate of z is obtained by reflecting the corresponding
vector through the real axis, as illustrated in Figure 3.7. In particular Z = z if and only if
z is real. Note that

z+z z—Z

Re z = 5 Im z = 5 (3.81)
Complex conjugation is compatible with complex arithmetic:
ZzH+w=z+w, Zw=Z W.
In particular, the product of a complex number and its conjugate,
2Z=(zx+iy) (x—iy) = 2% + 97 (3.82)

is real and non-negative. Its square root is known as the modulus or norm of the complex
number z = x + iy, and written

|z = Va2 +y?. (3.83)

Note that |z| > 0, with |z| = 0 if and only if z = 0. The modulus |z | generalizes the
absolute value of a real number, and coincides with the standard Euclidean norm in the
xy-plane, which implies the validity of the triangle inequality

lz4+w|<|z|+]|w] (3.84)
Equation (3.82) can be rewritten in terms of the modulus as
2z =z~ (3.85)

Rearranging the factors, we deduce the formula for the reciprocal of a nonzero complex
number:
z 1 r—1iy

1 .
= W , z#0, or, equivalently, 7+ iy =2 e (3.86)

The general formula for complex division,

w wz u+ iv zu+yv)+i(xv—yu
w or ! _ yv) + i y)’ (3.87)
z z|? T+ 1y x? 4 y?
is an immediate consequence.
The modulus of a complex number,
r=lzl= Va2,
is one component of its polar coordinate representation
x =rcosb, y=rsinf or z=r(cosf + isinf). (3.88)

The polar angle, which measures the angle that the line connecting z to the origin makes
with the horizontal axis, is known as the phase, and written

6 =phz. (3.89)

As such, the phase is defined only up to an integer multiple of 2. The more common term
for the angle is the argument, written arg z = phz. However, we prefer to use “phase”
throughout this text, in part to avoid confusion with the argument z of a function f(z).
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We note that the modulus and phase of a product of complex numbers can be readily
computed:
[zw|=]z]||w], ph (zw) = phz + phw. (3.90)

Complex conjugation preserves the modulus, but reverses the sign of the phase:
[z] =12, phz=— phz. (3.91)

One of the most profound formulas in all of mathematics is Fuler’s formula
e'? = cosf 4 isind, (3.92)
relating the complex exponential with the real sine and cosine functions. It has a variety of
mathematical justifications; see Exercise 3.6.23 for one that is based on comparing power
series. Euler’s formula can be used to compactly rewrite the polar form (3.88) of a complex
number as

z=rel? where r=|z]|, ¢ =phz. (3.93)

The complex conjugation identity
e 1% = cos(—0) + i sin(—0) = cosh — isinf =ei?
permits us to express the basic trigonometric functions in terms of complex exponentials:

6 ,—i6 6 _ —i6
cosf = e te , sinf = % . (3.94)
2 21
These formulas are very useful when working with trigonometric identities and integrals.
The exponential of a general complex number is easily derived from the Euler formula
and the standard properties of the exponential function — which carry over unaltered to
the complex domain; thus,

e* =e" TV = ¢ el¥ = e%cosy + 1e”siny. (3.95)
Note that €™ = 1, and hence the exponential function is periodic,
eF T2 — 2 (3.96)

with imaginary period 271 — indicative of the periodicity of the trigonometric functions
in Euler’s formula.

Exercises

3.6.1. Write down a single equation that relates the five most important numbers in
mathematics, which are 0,1,e, 7, and 1i.

3.6.2. For any integer k, prove that e*™1 = (—1)".
3.6.3. Is the formula 17 = 1 valid for all complex values of z?

3.6.4. What is wrong with the calculation €221 = (¢271)® = 1% = 1?

3.6.5.(a) Write i in phase-modulus form. (b) Use this expression to find v/, i.e., a complex

number z such that 22 = i. Can you find a second square root? (¢) Find explicit
formulas for the three third roots and four fourth roots of i.

3.6.6. In Figure 3.7, where would you place the point 1/27
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3.6.7.(a) If z moves counterclockwise around a circle of radius r in the complex plane, around
which circle and in which direction does w = 1/z move? (b) What about w = z?
(¢) What if the circle is not centered at the origin?

& 3.6.8. Show that —|z| <Rez <|z|and —|z|<Imz < |z|.
& 3.6.9. Prove that if ¢ is real, then Re (e!¥ z) < |z |, with equality if and only if ¢ = — ph z.
3.6.10. Prove the identities in (3.90) and (3.91).

3.6.11. Prove ph(z/w) = phz — phw = ph(zw) is equal to the angle between the vectors
representing z and w.

3.6.12. The phase of a complex number z = x + iy is often written as phz = tan~!(y/x).
Explain why this formula is ambiguous, and does not uniquely define ph z.

3.6.13. Show that if we identify the complex numbers z, w with vectors in the plane, then their
Euclidean dot product is equal to Re (zw).

3.6.14.(a) Prove that the complex numbers z and w correspond to orthogonal vectors in R? if
and only if Re zw = 0. (b) Prove that z and iz are always orthogonal.

3.6.15. Prove that e*T% = e”e". Conclude that ¢™* = (¢*)™ whenever m is an integer.

3.6.16.(a) Use the formula ¢21? = (¢19)? to deduce the well-known trigonometric identities
for cos 260 and sin26. (b) Derive the corresponding identities for cos 36 and sin 36.
(¢) Write down the explicit identities for cosm@ and sinm@ as polynomials in cosf and

sinf. Hint: Apply the Binomial Formula to (e'?)™.

{ 3.6.17. Use complex exponentials to prove the identity cos 6 — cos p = 2 cos g ® cos HT('D .
3.6.18. Prove that if z =z + iy, then | | =¢”, phe® =y.
6iz—|—67iz eiz_efiz
3.6.19. The formulas cos z = — and sinz = — 7 serve to define the basic

complex trigonometric functions. Write out the formulas for their real and imaginary parts
in terms of z = x + iy, and show that cos z and sin z reduce to their usual real forms when

z = x is real. What do they become when z = iy is purely imaginary?

, , e +e % e —e *
3.6.20. The complex hyperbolic functions are defined as cosh z = — sinh z = —

(a) Write out the formulas for their real and imaginary parts in terms of z = = + iy.
(b) Prove that cos iz = cosh z and sin iz = i sinh z.

© 3.6.21. Generalizing Example 2.17c, by a trigonometric polynomial of degree < m, we mean
a function T'(2) = o< jir<p Cjj (cos 0)7 (sin 0)" in the powers of the sine and cosine

functions up to degree n. (a) Use formula (3.94) to prove that every trigonometric
polynomial of degree < n can be written as a complex linear combination of the 2n + 1

complex exponentials e_me, 6_19, 10 — 1, 616, 6219, el (b) Prove that
every trigonometric polynomial of degree < n can be written as a real linear combination of
the trigonometric functions 1, cos@, sinf, cos26, sin20, ... cosnf, sinn6.

(¢) Write out the following trigonometric polynomials in both of the preceding forms:
(i) cos?0, (i) cos@sin, (iii) cos®@, (iv) sin®6, (v) cos?@sin? 0.

{ 3.6.22. Write out the real and imaginary parts of the power function ¢ with complex exponent
c=a+ibeC.

{ 3.6.23. Write the power series expansions for e!®. Prove that the real terms give the power
series for cos z, while the imaginary terms give that of sinx. Use this identification to
justify Euler’s formula (3.92).
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& 3.6.24. The derivative of a complex-valued function f(z) = u(z) + iv(z), depending on a
real variable x, is given by f'(z) = u/(z) + iv'(z). (a) Prove that if A = p + iv is any
d & | Az b e, 1/ xb a
complex scalar, then — e¢”* = Xe”". (b) Prove, conversely, / e Vdr = — (e —e )
A dx a A
provided A # 0.
3.6.25. Use the complex trigonometric formulas (3.94) and Exercise 3.6.24 to evaluate the
following trigonometric integrals: (a) / cos? z d, (b) / sin? z dz, (c) / coszsinx dz,

(d) / cos3xsin b5z dx. How did you calculate them in first-year calculus? If you’re not
convinced this method is easier, try the more complicated integrals

(e) /cos4:1:dm, (f) /sin4xdx, (8) /c082m51n2xdz, (h) /cosstinSa:coshcdx.

Complex Vector Spaces and Inner Products

A complex vector space is defined in exactly the same manner as its real counterpart, as
in Definition 2.1, the only difference being that we replace real scalars by complex scalars.
The most basic example is the n-dimensional complex vector space C™ consisting of all
column vectors z = (2, 29,..., 2, )T that have n complex entries z;,...,2, € C. Vector
addition and scalar multiplication are defined in the obvious manner, and verification of
each of the vector space axioms is immediate.

We can write any complex vector z = x + iy € C™ as a linear combination of two real
vectors Xx = Re z and y = Im z € R" called its real and imaginary parts. Its complex
conjugate z = x — iy is obtained by taking the complex conjugates of its individual entries.
Thus, for example, if

1421 1 2 1 2
7z = -3 =|-3]+i{0], then Rez=|-3], Imz=|0|,
51 0 5 0 5
1-—2i 1 2
and so its complex conjugate is zZ = -3 =|1-3]—-1i10
—5i 0 5

In particular, z € R™ C C" is a real vector if and only if z = 7.

Most of the vector space concepts we developed in the real domain, including span, linear
independence, basis, and dimension, can be straightforwardly extended to the complex
regime. The one exception is the concept of an inner product, which requires a little
thought. In analysis, the primary applications of inner products and norms rely on the
associated inequalities: Cauchy—Schwarz and triangle. But there is no natural ordering of
the complex numbers, and so one cannot assign a meaning to a complex inequality like
z < w. Inequalities make sense only in the real domain, and so the norm of a complex
vector should still be a positive and real. With this in mind, the naive idea of simply
summing the squares of the entries of a complex vector will not define a norm on C",
since the result will typically be complex. Moreover, some nonzero complex vectors, e.g.,
(1,i)", would then have zero “norm”.

The correct definition is modeled on the formula

|z =V=zZ,

which defines the modulus of a complex scalar z € C. If, in analogy with the real definition
(3.7), the quantity inside the square root should represent the inner product of z with
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itself, then we should define the “dot product” between two complex numbers to be
Z-w=2W, so that z-z=27Z=|z|%
Writing out the formula when z =z + iy and w = u + iv, we obtain
zow=zw=(r+ iy) (u— iv) = (xu+yv) + i(yu — zv). (3.97)

Thus, the dot product of two complex numbers is, in general, complex. The real part of
z-w is, in fact, the Euclidean dot product between the corresponding vectors in R?, while
its imaginary part is, interestingly, their scalar cross product, cf. (3.22).

The vector version of this construction is named after the nineteenth-century French
mathematician Charles Hermite, and called the Hermitian dot product on C™. It has the
explicit formula

1 wy
Zq w
T — J— J— J—
Z-W=27 W=2W +2,Wy+ -+ +2,W,, for z=| .|, w=/[ . [. (3.98)
Z”l wTL

Pay attention to the fact that we must apply complex conjugation to all the entries of the
second vector. For example, if

(14 _(1+2i PR, o
z—(3+21>, W—( ; >, then z-w=(14+1)(1—-2i)+(3+2i)(—1)=5—41i.

On the other hand,
w-z=(1+21)1-1)4+1(3-2i)=5+4i,

and we conclude that the Hermitian dot product is not symmetric. Indeed, reversing the
order of the vectors conjugates their dot product:

W+-Z — Z-W.

This is an unexpected complication, but it does have the desired effect that the induced
norm, namely

0< |zl =Vz-z2=VaTz= ]z [P+ - +]z,, (3.99)
is strictly positive for all 0 # z € C™. For example, if
1+ 3i
z=| —2i |, then |z =V [143iP+|-2i+|-5=V39.
)

The Hermitian dot product is well behaved under complex vector addition:
(z+z) w=z-W+7z- W, z-(WH+W)=2z-w+z- W.

However, while complex scalar multiples can be extracted from the first vector without
alteration, when they multiply the second vector, they emerge as complex conjugates:

(cz) - w=c(z w), z-(cw)=¢(z-w), ceC.

Thus, the Hermitian dot product is not bilinear in the strict sense, but satisfies something
that, for lack of a better name, is known as sesquilinearity.
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The general definition of an inner product on a complex vector space is modeled on the
preceding properties of the Hermitian dot product.

Definition 3.48. An inner product on the complex vector space V is a pairing that takes
two vectors v, w € V and produces a complex number (v ,w) € C, subject to the following
requirements, for u,v,w € V, and ¢,d € C:
(i) Sesquilinearity:
(cut+dv,w)=c{u,w)+d(v,w),

<u70V+dW>=5<u,v)+E<u7w>_ (3.100)

(it) Conjugate Symmetry:

(v,w)=(w,v). (3.101)

(#ii) Positivity:
|v|?=(v,v)>0, and (v,v)=0 ifandonlyif v=0. (3.102)
Thus, when dealing with a complex inner product space, one must pay careful attention
to the complex conjugate that appears when the second argument in the inner product
is multiplied by a complex scalar, as well as the complex conjugate that appears when
the order of the two arguments is reversed. But, once this initial complication has been
properly taken into account, the further properties of the inner product carry over directly

from the real domain. Exercise 3.6.45 contains the formula for a general inner product on
the complex vector space C™.

Theorem 3.49. The Cauchy—Schwarz inequality,

(v, w) | < (IvIfiwl, (3.103)
with | -| now denoting the complex modulus, and the triangle inequality

[v+wl < vl +I[wl (3.104)
are both valid on an arbitrary complex inner product space.

The proof of (3.103-104) is modeled on the real case, and the details are left to the
reader.

T

Example 3.50. The vectors v = (1+i,2i,—-3)", w=(2-1,1,2+2i)", satisfy

|v]|=v2+4+9= V15, |wl=v5+1+8=114,
v-w=(1+1)24+1)+21+(-3)(2—-21)=—-5+11i.
Thus, the Cauchy—Schwarz inequality reads
[(v,w) | = =5+ 111 | = VII6 < V310 = VI5 VI = || v [|w]
Similarly, the triangle inequality tells us that

v+wl=1(31+2i,-1+2i)" | =vVI+5+5=vV19<VI5 +VId=|v| +]|w]

Example 3.51. Let C°[—m, 7] denote the complex vector space consisting of all

complex-valued continuous functions f(z) = u(x)+ iv(z) depending upon the real variable
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—7 < & < 7. The Hermitian L2 inner product on CY[—m, 7] is defined as

(fr9)= f( )g(w)dz , (3.105)

i.e., the integral of f times the complex conjugate of g, with corresponding norm

N fll = ” 3 z)|2dr = \//_ +v(z)? ] dx . (3.106)

The reader can verify that (3.105) satisfies the Hermitian inner product axioms.
In particular, if k,[ are integers, then the inner product of the complex exponential

: ikz ilx
functions e'"* and e'** is 27, k=1,
<eikm’eilm>:/ eikmefilzdx:/ pi(k=Dz g, _ ol (k=l)z i 0 e
o o i(k—1) - ‘
r=—T7
ikx

We conclude that when k # [, the complex exponentials e and e'" are orthogonal,
since their inner product is zero. The complex formulation of Fourier analysis, [61, 77], is
founded on this key example.

Exercises

3.6.26. Determine whether the indicated sets of complex vectors are linearly independent or

dependent.  (a) (i) (}) (b) (1?)7 (1fi>, (c) (1;_311)7 <21:3ii),
@ () () G () ()

1 1+2i 1—1i 1+ 1-1i —1+1i
% ( 3 ) ( 5 ) (_i ) ® (2_1), (_31 ) (Mi).
2—1i 0 1 1 1-2i 1421

3.6.27. True or false: The set of complex vectors of the form <;) for z € C is a subspace of C2.

1 0 -1+
3.6.28.(a) Determine whether the vectors v, = ( i ), vy = (1 +1i ), vy = ( 1+1 ),
0 2 —1

are linearly independent or linearly dependent. (b) Do they form a basis of C3?
(¢) Compute the Hermitian norm of each vector. (d) Compute the Hermitian dot
products between all different pairs. Which vectors are orthogonal?
3.6.29. Find the dimension of and a basis for the following subspaces of C3: (a) The set of all
complex multiples of (1, 1,1 — i )T. (b) The plane z; + iz9+ (1 —1)z3 =0. (c) The image

. 1 i 2—1 .
of the matrix A = (2 T o143i —1-i ) (d) The kernel of the same matrix. (e) The
set of vectors that are orthogonal to (1 —1,2i,1+ i )T.
3.6.30. Find bases for the four fundamental subspaces associated with the complex matrices

i ~ i -1 2-i
2 2 —1+i 1-2i v .
(a) ( 1 21> (b) (74 3 1+ i ), (c) (—1—}—21 —2—1 3').
1 -1 1+1
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3.6.31. Prove that v =x+ iy and Vv = x — iy are linearly independent complex vectors if and
only if their real and imaginary parts x and y are linearly independent real vectors.

3.6.32. Prove that the space of complex m x n matrices is a complex vector space. What is its
dimension?

3.6.33. Determine which of the following are subspaces of the vector space consisting of all
complex 2 x 2 matrices. (a) All matrices with real diagonals. (b) All matrices for which
the sum of the diagonal entries is zero. (c¢) All singular complex matrices. (d) All matrices

whose determinant is real. (e) All matrices of the form (g %), where a,b € C.

3.6.34. True or false: The set of all complex-valued functions u(z) = v(z) + iw(z) with
u(0) = 1 is a subspace of the vector space of complex-valued functions.

ix

' and e” ',

3.6.35. Let V denote the complex vector space spanned by the functions 1, e
where z is a real variable. Which of the following functions belong to V7
(a) sinz, (b) cosz —2isinz, (c) coshz, (d) sin® %x, (e) cos®z?

3.6.36. Prove that the following define Hermitian inner products on C2:

(a) (v, W) =0 +20,W,, (b) (v, W) =0, + ivyWy — iv,W; + 20,W,.
3.6.37. Which of the following define inner products on C2? (a) (v,w) = vy Wy + 21 vyW,,
(b) (v, w) = vjwy + 2vpwy, (c) (v, W) = v1Wy +vowy, (d) (v,w) =
(1-

20, Wy +v] Wy + vy Wy +205W,y, () (v, W) =2vw;+(1+1)v, wy+ i) vyWy +3vy Ws.

¢ 3.6.38. Let A = AT be a real symmetric n x n matrix. Show that (Av)-w = v - (Aw) for all

v,w e C".
3.6.39. Let z=x+ iy € C™.

(a) Prove that, for the Hermitian dot product, ||z % = ||x|? + ||y ||*.
(b) Does this formula remain valid under a more general Hermitian inner product on C"?

{ 3.6.40. Let V be a complex inner product space. Prove that, for all z,w € V,
(a) llz+wl* = [z]* +2Re (z,w) + | w]*;
(b) (z,w) =3 (lz+wl®—llz—wl® +illz+iw|* — iz~ iw|?*).

{ 3.6.41.(a) How would you define the angle between two elements of a complex inner product
space? (b) What is the angle between (—1,2 — i,—14 21 ) and (—2—i,—i,1—i)7
relative to the Hermitian dot product?

3.6.42. Let 0 # v € C™. Which scalar multiples ¢ v have the same Hermitian norm as v?

& 3.6.43. Prove the Cauchy—Schwarz inequality (3.103) and the triangle inequality (3.104) for a
general complex inner product. Hint: Use Exercises 3.6.8, 3.6.40(a).

{ 3.6.44. The Hermitian adjoint of a complex m X n matrix A is the complex conjugate of its
transpose, written AT = AT = AT

oo (140 2 f o (1-i -3
Forexample,lfA—< _3 2_5i>,thenA _(—21 2+5i>.Provethat

(a) (ANt =4, (b) zA+wB) =zAT +wB for z,w e C, (¢) (4AB)! = BT AT.

$ 3.6.45. A complex matrix H is called Hermitian if it equals its Hermitian adjoint, H t=—H ,
as defined in the preceding exercise. (a) Prove that the diagonal entries of a Hermitian

matrix are real. (b) Prove that (Hz) -w =z (Hw) for z,w € C". (c¢) Prove that every
Hermitian inner product on C" has the form (z,w) = z! HwW, where H is an n x n positive

definite Hermitian matrix. (d) How would you verify positive definiteness of a complex
matrix?
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3.6.46. Multiple choice: Let V be a complex normed vector space. How many unit vectors are
parallel to a given vector 0 # v € V7 (a) none; (b) 1; (¢) 2; (d) 3; (e) oo; (f) depends
upon the vector; (g) depends on the norm. Explain your answer.

& 3.6.47. Let vq,...,v,, be elements of a complex inner product space. Let K denote the
corresponding n X n Gram matriz, defined in the usual manner.
(a) Prove that K is a Hermitian matrix, as defined in Exercise 3.6.45.
(b) Prove that K is positive semi-definite, meaning z* Kz > 0 for all z € C".
(c) Prove that K is positive definite if and only if v,,...,v,, are linearly independent.

3.6.48. For each of the following pairs of complex-valued functions,
(i) compute their L2 norm and Hermitian inner product on the interval [0,1], and then
(i1) check the validity of the Cauchy—Schwarz and triangle inequalities.

(a) 1, '™ (b) z+i, z—1i; (c) iz? (1—2i)z+3i.
3.6.49. Formulate conditions on a weight function w(z) that guarantee that the weighted
b -
integral (f,g) = / f(x) g(z) w(xz) dx defines an inner product on the space of continuous
a

complex-valued functions on [a,b].
3.6.50. (a) Formulate a general definition of a norm on a complex vector space.

(b) How would you define analogues of the L', L2 and L> norms on C"?
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Chapter 4
Orthogonality

Orthogonality is the mathematical formalization of the geometrical property of perpendic-
ularity, as adapted to general inner product spaces. In linear algebra, bases consisting of
mutually orthogonal elements play an essential role in theoretical developments, in a broad
range of applications, and in the design of practical numerical algorithms. Computations
become dramatically simpler and less prone to numerical instabilities when performed in
orthogonal coordinate systems. Indeed, many large-scale modern applications would be
impractical, if not completely infeasible, were it not for the dramatic simplifying power of
orthogonality.

The duly famous Gram—Schmidt process will convert an arbitrary basis of an inner
product space into an orthogonal basis. In Euclidean space, the Gram—Schmidt process can
be reinterpreted as a new kind of matrix factorization, in which a nonsingular matrix A =
Q@ R is written as the product of an orthogonal matrix @ and an upper triangular matrix R.
The @ R factorization and its generalizations are used in statistical data analysis as well as
the design of numerical algorithms for computing eigenvalues and eigenvectors. In function
space, the Gram-Schmidt algorithm is employed to construct orthogonal polynomials and
other useful systems of orthogonal functions.

Orthogonality is motivated by geometry, and orthogonal matrices, meaning those whose
columns form an orthonormal system, are of fundamental importance in the mathemat-
ics of symmetry, in image processing, and in computer graphics, animation, and cinema,
[5,12,72,73]. The orthogonal projection of a point onto a subspace turns out to be the
closest point or least squares minimizer, as we discuss in Chapter 5. Yet another important
fact is that the four fundamental subspaces of a matrix that were introduced in Chapter 2
come in mutually orthogonal pairs. This observation leads directly to a new characteri-
zation of the compatibility conditions for linear algebraic systems known as the Fredholm
alternative, whose extensions are used in the analysis of linear boundary value problems,
differential equations, and integral equations, [16,61]. The orthogonality of eigenvector
and eigenfunction bases for symmetric matrices and self-adjoint operators provides the key
to understanding the dynamics of discrete and continuous mechanical, thermodynamical,
electrical, and quantum mechanical systems.

One of the most fertile applications of orthogonal bases is in signal processing. Fourier
analysis decomposes a signal into its simple periodic components — sines and cosines
— which form an orthogonal system of functions, [61, 77]. Modern digital media, such as
CD’s, DVD’s and MP3’s, are based on discrete data obtained by sampling a physical signal.
The Discrete Fourier Transform (DFT) uses orthogonality to decompose the sampled signal
vector into a linear combination of sampled trigonometric functions (or, more accurately,
complex exponentials). Basic data compression and noise removal algorithms are applied to
the discrete Fourier coefficients, acting on the observation that noise tends to accumulate
in the high-frequency Fourier modes. More sophisticated signal and image processing
techniques, including smoothing and compression algorithms, are based on orthogonal
wavelet bases, which are discussed in Section 9.7.

© Springer International Publishing AG, part of Springer Nature 2018 183
P. J. Olver, C. Shakiban, Applied Linear Algebra, Undergraduate Texts in Mathematics,
https://doi.org/10.1007/978-3-319-91041-3_4


https://doi.org/10.1007/978-3-319-91041-3_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91041-3_4&domain=pdf

184 4 Orthogonality

L

Figure 4.1.  Orthonormal Bases in R? and R3.

4.1 Orthogonal and Orthonormal Bases

Let V be a real’ inner product space. Recall that two elements v,w € V are called
orthogonal if their inner product vanishes: (v ,w) = 0. In the case of vectors in Euclidean
space, orthogonality under the dot product means that they meet at a right angle.

A particularly important configuration arises when V' admits a basis consisting of mu-
tually orthogonal elements.

Definition 4.1. A basis u,,...,u, of an n-dimensional inner product space V is called
orthogonal if (u;,u;) = 0 for all i # j. The basis is called orthonormal if, in addition,
each vector has unit length: |u,|| =1, foralli=1,...,n.

For the Euclidean space R™ equipped with the standard dot product, the simplest
example of an orthonormal basis is the standard basis

1 0 0
0 1 0
0 0 0
e, =1 .1, e, =1 .1, e,=| .
0 0 0
0 0 1
Orthogonality follows because e, - e; = 0, for i # j, while | e, || = 1 implies normality.

Since a basis cannot contain the zero vector, there is an easy way to convert an orthogo-
nal basis to an orthonormal basis. Namely, we replace each basis vector with a unit vector
pointing in the same direction, as in Lemma 3.14.

Lemma 4.2. If v,,..., v, is an orthogonal basis of a vector space V', then the normalized
vectors u;, = v, /|| v, |, i =1,...,n, form an orthonormal basis.

' The methods can be adapted more or less straightforwardly to the complex realm. The main
complication, as noted in Section 3.6, is that we need to be careful with the order of vectors
appearing in the conjugate symmetric complex inner products. In this chapter, we will be careful
to write the inner product formulas in the proper order so that they retain their validity in complex
vector spaces.
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Example 4.3. The vectors

1 0 )
v, = 21, vo= 111, vao=|[ -2 ],
—1 2 1

are easily seen to form a basis of R3. Moreover, they are mutually perpendicular, v, - v, =
vV, Vg = Vy - vy = 0, and so form an orthogonal basis with respect to the standard dot
product on R3. When we divide each orthogonal basis vector by its length, the result is
the orthonormal basis

1 0 5
1 1 V6 1 0 ) V30
A A0 EEREATY A B B v
Ve V5 V/30

satisfying u; -u, =u, -uy =u, -uy =0 and |[u, || = ||uy|| = ||uy|| = 1. The appearance

of square roots in the elements of an orthonormal basis is fairly typical.

A useful observation is that every orthogonal collection of nonzero vectors is automati-
cally linearly independent.

Proposition 4.4. Let v{,...,v, € V be nonzero, mutually orthogonal elements, so v, # 0
and (v,, v ) =0 for all i # j. Then v,,..., v, are linearly independent.

Proof: Suppose

v+ -+ v=0.
Let us take the inner product of this equation with any v,. Using linearity of the inner
product and orthogonality, we compute
O0=(c;vi+ - +ev, Vi) =c (v, Vi) + -+ (v, v,) = ¢ (v, vy) = ¢ llv;]%
Therefore, given that v; # 0, we conclude that ¢, = 0. Since this holds for all i =1,...,k,

the linear independence of v, ..., v, follows. Q.E.D.

As a direct corollary, we infer that every collection of nonzero orthogonal vectors forms
a basis for its span.

Theorem 4.5. Suppose v,,...,v, € V are nonzero, mutually orthogonal elements of
an inner product space V. Then vy,...,v, form an orthogonal basis for their span
W = span {v,,...,v,,} C V, which is therefore a subspace of dimension n = dim W.
In particular, if dim V' = n, then v,...,v, form a orthogonal basis for V.

Orthogonality is also of profound significance for function spaces. Here is a relatively
simple example.

Example 4.6. Consider the vector space P consisting of all quadratic polynomials

p(x) = a + Bz + v22, equipped with the L? inner product and norm

<p,q>=/0 p(@)g@) de, ol = V(pop) = \//0 p(x)2de .
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The standard monomials 1, z, 2% do not form an orthogonal basis. Indeed,
<1,:c>:%, <1,x2>:%, <x,x2>=%.
One orthogonal basis of P is provided by following polynomials:

, py(z) =2 —z+ 1. (4.1)

8
N

pi(z) =1, po(z) =
Indeed, one easily verifies that (p,,py) = (p; ,p3) = (P, p3) =0, while
1 1 1 1
Py ]l =1, ||P2||:ﬁ=ma ||P3||=\/ﬁ:m~
The corresponding orthonormal basis is found by dividing each orthogonal basis element
by its norm:
uy(z) =1, uy(z) = V3 (20— 1), u3(x):\/5(6a:2—6x+1).

In Section 4.5 below, we will learn how to systematically construct such orthogonal systems
of polynomials.

Exercises

4.1.1. Let R? have the standard dot product. Classify the following pairs of vectors as

(i) basis, (i4) orthogonal basis, and/or (i7) orthonormal basis:
1

(a) vlz(_%),%:(?)é(b) V1=($)7V2:(_?);(C) V1:<:%>7V2:<§);

V2 V2

(d) v1:<§>,v2=(_é>;(e) V1:<_(1)>a"2:<g);(f) V1:<§>7V2:(_

4.1.2. Let R® have the standard dot product. Classify the following sets of vectors as
(i) basis, (#) orthogonal basis, and/or (ii7) orthonormal basis:

QYO U

4 3 _ 1 1

(a) 1 ’ -1 ’ 1 5 (b) 5 ’ 0 ’ 14 ; (C) ﬁ ’ 01, - =
0 1) \1 s )\ s ) s L E V2

65 13 65 V2 V2 0

4.1.3. Repeat Exercise 4.1.1, but use the weighted inner product (v,w) = v, w; + %1)2 Wy
instead of the dot product.

4.1.4. Show that the standard basis vectors e, e,, €5 form an orthogonal basis with respect to
the weighted inner product (v, w) = v, w; + 2vywy + 3v3ws on R3. Find an orthonormal
basis for this inner product space.

4.1.5. Find all values of a such that the vectors <61L>, <761L> form an orthogonal basis of
R? under (a) the dot product; (b) the weighted inner product (v, w) = 3v; w; + 2vy wy;

(¢) the inner product prescribed by the positive definite matrix K = (_? _:_1;>

4.1.6. Find all possible values of a and b in the inner product (v ,w) = av, w; + bvyw, that
make the vectors (1,2 )T, (-1,1 )T, an orthogonal basis in R?.

4.1.7. Answer Exercise 4.1.6 for the vectors (a) (2,3)7, (=2,2)T; (b) (1,0)T, (2,1)T.
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4.1.8. Find an inner product such that the vectors (—1,2 )T and (1,2 )T form an orthonormal
basis of R2.
4.1.9. True or false: If v, vy, vy are a basis for R3, then they form an orthogonal basis under

some appropriately weighted inner product (v, w) = av; w; + bvywy + cvgws.

© 4.1.10. The cross product between two vectors in R? is the vector defined by the formula
VoW — VgWy vy wy
v><w:(11311)1—11111)3)7 where v = (v2), w:(wQ). (4.2)
U Wy — YWy U3 w3
(a) Show that u = v x w is orthogonal, under the dot product, to both v and w.
(b) Show that v x w = 0 if and only if v and w are parallel. (¢) Prove that if v,w € R3
are orthogonal nonzero vectors, then u = v X w, v, w form an orthogonal basis of R3.
(d) True or false: If v,w € R3 are orthogonal unit vectors, then v, w and u = v x w form

an orthonormal basis of R3.
{ 4.1.11. Prove that every orthonormal basis of R? under the standard dot product has the form

u; = C(.)SG and uy = + | sin 0 for some 0 < 6 < 27 and some choice of + sign.
sin 0 cos
cos ¥ cos p — cos f sin p sin
& 4.1.12. Given angles 6, ¢, 1, prove that the vectors u; = | —sint cosp —cosf@sinpcosy |,
sin 0 sin ¢

cos ¥ sin ¢ + cos 0 cos p sin i sin 6 sin ¢
u, = | —sintysing +cosfcospcost |, ug = | sinfcosey |, form an orthonormal basis
—sinfcos g cos

of R? under the standard dot product. Remark. It can be proved, [31; p. 147], that every
orthonormal basis of R? has the form u;,uy, £uy for some choice of angles 6, ¢, .

© 4.1.13.(a) Show that v{,...,v, form an orthonormal basis of R™ for the inner product
(v,w) =vIKwfor K > 0if and only if ATK A = 1, where A = (vivg...v,).
(b) Prove that every basis of R™ is an orthonormal basis with respect to some inner
product. Is the inner product uniquely determined? (c¢) Find the inner product on R? that
makes v; = (1,1 )7, vy = (2,3 )" into an orthonormal basis. (d) Find the inner product
on R? that makes vy =(1,1,1 )T7 vy = (1,1, 2)T, vy = (1,2, S)T an orthonormal basis.

4.1.14. Describe all orthonormal bases of R? for the inner products
(1 0 T 1 -1
(a) (v,w)=v <0 2>w; (b) (v,w)=v <_1 Q)W.
4.1.15. Let v and w be elements of an inner product space. Prove that
|v+wl|?=||v|?+ | w|? if and only if v,w are orthogonal. Explain why this formula can
be viewed as the generalization of the Pythagorean Theorem.

4.1.16. Prove that if v, v, form a basis of an inner product space V' and ||v | = || v, ||, then
v, + vy and v; — v, form an orthogonal basis of V.

4.1.17. Suppose v, ..., Vv, are nonzero mutually orthogonal elements of an inner product space
V. Write down their Gram matrix. Why is it nonsingular?

4.1.18. Let V. = PM be the vector space consisting of linear polynomials p(t) = at + b.
1
(a) Carefully explain why (p,q) = /(; tp(t) q(t) dt defines an inner product on V.
(b) Find all polynomials p(t) = at + b € V that are orthogonal to p; (t) = 1 based on
this inner product. (c¢) Use part (b) to construct an orthonormal basis of V' for this inner

product. (d) Find an orthonormal basis of the space PR of quadratic polynomials for the
same inner product. Hint: First find a quadratic polynomial that is orthogonal to the basis

you constructed in part (c).
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4.1.19. Explain why the functions cosz,sin x form an orthogonal basis for the space of
solutions to the differential equation y” + y = 0 under the L? inner product on [—,7].

4.1.20. Do the functions ex/z, e~ */2 form an orthogonal basis for the space of solutions to the
differential equation 43" — y = 0 under the L? inner product on [0,1]7 If not, can you find
an orthogonal basis of the solution space?

Computations in Orthogonal Bases

What are the advantages of orthogonal and orthonormal bases? Once one has a basis of
a vector space, a key issue is how to express other elements as linear combinations of the
basis elements — that is, to find their coordinates in the prescribed basis. In general, this
is not so easy, since it requires solving a system of linear equations, as described in (2.23).
In high-dimensional situations arising in applications, computing the solution may require
a considerable, if not infeasible, amount of time and effort.

However, if the basis is orthogonal, or, even better, orthonormal, then the change of basis
computation requires almost no work. This is the crucial insight underlying the efficacy of
both discrete and continuous Fourier analysis in signal, image, and video processing, least
squares approximations, the statistical analysis of large data sets, and a multitude of other
applications, both classical and modern.

Theorem 4.7. Let u,,...,u, be an orthonormal basis for an inner product space V.
Then one can write any element v € V' as a linear combination

v=cu + --- +c,u,, (4.3)
in which its coordinates
¢ ={(v,u), i=1,...,n, (4.4)

are explicitly given as inner products. Moreover, its norm is given by the Pythagorean
formula

Ivli= e+ -+ =

namely, the square root of the sum of the squares of its orthonormal basis coordinates.

Proof: Let us compute the inner product of the element (4.3) with one of the basis vectors.
Using the orthonormality conditions
0 i#J

O (46)

and bilinearity of the inner product, we obtain

n n
<v7ui>_<z Cjuj7ui>_z Cj<uj7ui>:CiHui||2:Ci'

j=1 j=1
To prove formula (4.5), we similarly expand

n

n n n
||V|2—<V7V>_<Z cug, Y Cj“j>_ Y e {uu) =)

j=1 j=1 ij=1 i=1

again making use of the orthonormality of the basis elements. Q.E.D.
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It is worth emphasizing that the Pythagorean-type formula (4.5) is valid for all inner
products.

Example 4.8. Let us rewrite the vector v.= (1,1,1 )T in terms of the orthonormal

basis
L 0 5
V6 V30
_ 2 N [ — 2
W = 7 |’ w =17 | W= -7 |
1 2 1
6 V5 V30
constructed in Example 4.3. Computing the dot products
2 3 4
\"‘.1:77 VvV - = —, vV-u = —,
1 \/6 2 \/5 3 /—30
we immediately conclude that
2 u, + 5 u, + 1 u
v=— — —— u,.
\/6 1 \/g 2 /—30 3

Needless to say, a direct computation based on solving the associated linear system, as in
Chapter 2, is more tedious.

While passage from an orthogonal basis to its orthonormal version is elementary — one
simply divides each basis element by its norm — we shall often find it more convenient to
work directly with the unnormalized version. The next result provides the corresponding
formula expressing a vector in terms of an orthogonal, but not necessarily orthonormal
basis. The proof proceeds exactly as in the orthonormal case, and details are left to the
reader.

Theorem 4.9. If v,,..., v, form an orthogonal basis, then the corresponding coordinates
of a vector
v,V,
v=a;vi+ - +a,v, are given by  a, = <|| - ||12> . (4.7)
Vi

In this case, its norm can be computed using the formula

V2= @ vl =3 (“”)2. (48)

2 2\ v,

Equation (4.7), along with its orthonormal simplification (4.4), is one of the most useful
formulas we shall establish, and applications will appear repeatedly throughout this text
and beyond.

Example 4.10. The wavelet basis

1 1 1 0
1 1 -1 0

V= 1 ’ Vo = —1 ’ V3 = BE V4= 1 ’ (49)
1 —1 0 —1

introduced in Example 2.35 is, in fact, an orthogonal basis of R*. The norms are

vill =2, vyl =2, Ivsll = V2, vl = V2.
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Therefore, using (4.7), we can readily express any vector as a linear combination of the
wavelet basis vectors. For example,

4
-2
v = 1 =2V, — vy +3vy—2v,

5
where the wavelet coordinates are computed directly by

Sy vvs) 6o (vivy) _Z4
TolvslE 2 T [fvyl? 2

<V7V1> 8 <V7V2> :é::

Ival 47 ivef? 4

This is clearly quicker than solving the linear system, as we did earlier in Example 2.35.
Finally, we note that

46 =v|*=22Iv, [+ (= 1)?[Ivo I*+ 3% v [P+ (=2 vy [P =4-4+1-4+9-2+4 -2,
in conformity with (4.8).

Example 4.11. The same formulas are equally valid for orthogonal bases in function

spaces. For example, to express a quadratic polynomial

p(x) = 1 (7) + cypo(x) + c3p3(x) = ¢; + ¢y (x - %) +c3 (xz —T+ %)

in terms of the orthogonal basis (4.1), we merely compute the L? inner product integrals

|y | P2

1
cy = <p,p32> :180/ p(x)(m2—:v+%)dx.
Ips 0

Thus, for example, the coefficients for p(z) = 2% + z + 1 are
1 1
clz/(x2+m+1)dm:1—61, 02:12/ (@ +z+1)(z—1)de=2,
0 0

1
03:180/0 (@ +z+1)(2?—z+i)de=1,

and so
pla)=a’+z+1="+2(a-3)+ (" —z+3).

Example 4.12. Perhaps the most important example of an orthogonal basis is provided

by the basic trigonometric functions. Let 7(") denote the vector space consisting of all
trigonometric polynomials

T(x)= Z ajy (sinz)’ (cos x)* (4.10)
0<j+k<n

of degree < m. The individual monomials (sinz)’ (cosz)* span 7, but, as we saw in
Example 2.20, they do not form a basis, owing to identities stemming from the basic
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trigonometric formula cos? z + sin? 2 = 1. Exercise 3.6.21 introduced a more convenient
spanning set consisting of the 2n + 1 functions

1, cos T, sin x, cos2zx, sin 2z, . cosnx, sinnx. (4.11)

Let us prove that these functions form an orthogonal basis of 7(") with respect to the L2
inner product and norm:

(fr0)=[ F@)gw)ds, 1717 = [ fGe)? e (412)
The elementary integration formulas
Q 0, k#I,
0 k+#1 / sinkx sinlx dr =
™ ’ ’ - ™, k=1 7é 0,
/ coskx cosledr =< 2w, k=101=0,
™ k=1#0, / coskz sinlz dx = 0, (4.13)

which are valid for all nonnegative integers k, > 0, imply the orthogonality relations
(coskx,coslx) = (sinkx,sinlz) =0, k#1, (coskz,sinlz) =0,
|coskz|| = ||sinkzx| =/, k#0, 1] =v2r.
Theorem 4.5 now assures us that the functions (4.11) form a basis for 7("). One conse-
quence is that dim 7™ = 2n 4+ 1 — a fact that is not so easy to establish directly.

Orthogonality of the trigonometric functions (4.11) means that we can compute the
coefficients ag,...,a,,b;,...,b, of any trigonometric polynomial

(4.14)

p(r) = ag + Z (a), coskx +by, sinkx) (4.15)
k=1

by an explicit integration formula. Namely,

( (f,coskz)y 1 [T
ay = 2 27r/ f(x) dx, a, = Teoskal == » f(x)coskxdx,
(Fosinkz) 1 [T (4.16)
sinkx .
bk W = ; f(x) sinkx d.fU, k > 1.

These fundamental formulas play an essential role in the theory and applications of Fourier
series, [61,79,77].

Exercises

© 4.1.21.(a) Prove that the vectors v, = (1,1,1 )T, vy = (1,1, 7T, vy = (-1, 1,0)T, form
an orthogonal basis of R? with the dot product. (b) Use orthogonality to write the vector
v= (12, 3)T as a linear combination of v, vy, vs. (¢) Verify the formula (4.8) for ||v||.
(d) Construct an orthonormal basis, using the given vectors. (e) Write v as a linear
combination of the orthonormal basis, and verify (4.5).

_ (3¢9 4\T _ 4 12 3\T _(_48 _5 36\T
4122(3) Prove that vy = (g,O,g) y Vo = (_1_37ﬁ7ﬁ) , Vg = (_ﬁ’_l_v?)’@) s
form an orthonormal basis for R? for the usual dot product. (b) Find the coordinates of

=(1,1,1 )T relative to this basis. (¢) Verify formula (4.5) in this particular case.
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2 -1
—1 3
(a) Show that v; = (1,1 )T, vy = (2,1 )T form an orthogonal basis. (b) Write the
vector v = (3,2 )T as a linear combination of v, v, using the orthogonality formula (4.7).
(c¢) Verify the formula (4.8) for ||v||. (d) Find an orthonormal basis u;, u, for this inner
product. (e) Write v as a linear combination of the orthonormal basis, and verify (4.5).

4.1.23. Let R? have the inner product defined by the positive definite matrix K =

{ 4.1.24.(a) Let uy,...,u, be an orthonormal basis of a finite-dimensional inner product space V.
Let v=cu; +---+c,u, and w = dyu; +---+d,u, be any two elements of V.
Prove that (v ,w)=1c¢;d; +---+¢,d,,.
(b) Write down the corresponding inner product formula for an orthogonal basis.

4.1.25. Find an example that demonstrates why equation (4.5) is not valid for a non-
orthonormal basis.

4.1.26. Use orthogonality to write the polynomials 1,z and #? as linear combinations of the
orthogonal basis (4.1).

4.1.27.(a) Prove that the polynomials Py(t) = 1, Py(t) = t, Py(t) = t* — , Py(t) = t* — ¢,
form an orthogonal basis for the vector space PG of cubic polynomials for the L? inner
1
product (f,g) = / . f@)g(t)dt. (b) Find an orthonormal basis of PG, (c) Write 2 as
a linear combination of Py, P, Py, P; using the orthogonal basis formula (4.7).
4.1.28.(a) Prove that the polynomials Py(t) = 1, P (t) =t — 2, Py(t) = t* — St + 3, form an
orthogonal basis for P2 with respect to the weighted inner product
1
(f,9)= /0 f(t)g(t)tdt. (b) Find the corresponding orthonormal basis.

(c) Write t* as a linear combination of Py, P, P, using the orthogonal basis formula (4.7).

4.1.29. Write the following trigonometric polynomials in terms of the basis functions (4.11):
(a) cos’z, (b) coszsinz, (c)sinz, (d) coslzsin®z, (e) cos’ .
Hint: You can use complex exponentials to simplify the inner product integrals.

4.1.30. Write down an orthonormal basis of the space of trigonometric polynomials 7 with
™
respect to the L? inner product (f,9)= / f(x) g(z) de.
—T
{ 4.1.31. Show that the 2n+ 1 complex exponentials ek for k= -n,—n+1,...,—-1,0,1,....,n,
form an orthonormal basis for the space of complex-valued trigonometric polynomials under
ey . 1 ™ -
the Hermitian inner product ( f,g) = 2—/ f(z)g(x)dx.
mwJ=m
{ 4.1.32. Prove the trigonometric integral identities (4.13). Hint: You can either use a

trigonometric summation identity, or, if you can’t remember the right one, use Euler’s
formula (3.94) to rewrite sine and cosine as combinations of complex exponentials.

{ 4.1.33. Fill in the complete details of the proof of Theorem 4.9.

4.2 The Gram—Schmidt Process

Once we become convinced of the utility of orthogonal and orthonormal bases, a natural
question arises: How can we construct them? A practical algorithm was first discovered
by the French mathematician Pierre-Simon Laplace in the eighteenth century. Today the
algorithm is known as the Gram-Schmidt process, after its rediscovery by Gram, whom
we already met in Chapter 3, and the twentieth-century German mathematician Erhard
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Schmidt. The Gram—Schmidt process is one of the premier algorithms of applied and
computational linear algebra.

Let W denote a finite-dimensional inner product space. (To begin with, you might wish
to think of W as a subspace of R™, equipped with the standard FEuclidean dot product,
although the algorithm will be formulated in complete generality.) We assume that we
already know some basis wy,...,w, of W, where n = dimW. Our goal is to use this
information to construct an orthogonal basis v{,...,v,,.

We will construct the orthogonal basis elements one by one. Since initially we are not
worrying about normality, there are no conditions on the first orthogonal basis element v,
and so there is no harm in choosing

v, =W,.
Note that v, # 0, since w; appears in the original basis. Starting with w,, the second
basis vector v, must be orthogonal to the first: (v,,v,) = 0. Let us try to arrange this
by subtracting a suitable multiple of v, and set

V, =Wy — CVy,
where c is a scalar to be determined. The orthogonality condition
0={(vy,vy)=(Wy,v) —c(vy,vi) = (wy,vy) —c|lv]?
requires that ¢ = (w,, vy )/||v{]|?, and therefore

(wy,v1) N (4.17)

Vy =Wy —
Linear independence of v; = w, and w, ensures that v, # 0. (Check!)
Next, we construct
Vg = Wg —C; V] — CyVy
by subtracting suitable multiples of the first two orthogonal basis elements from w;. We
want v, to be orthogonal to both v, and v,. Since we already arranged that (v, ,v,) =0,
this requires

0=(vs,vy)=(wgz,vy)—c (vy,vy), 0=(v3,vy)=(W3,Vy) —3(Vq,Vy),
and hence
_<w3,v1> _<W37V2>
=0, Co ="
[ vl ([ vl

Therefore, the next orthogonal basis vector is given by the formula

(W3, vy) V. — (W3,vy)
b

Vg =Wy — 5
Since v, and v, are linear combinations of w; and w,, we must have v, # 0, since
otherwise, this would imply that w,,w,, w5 are linearly dependent, and hence could not
come from a basis.

Continuing in the same manner, suppose we have already constructed the mutually or-
thogonal vectors v,,...,v,_; as linear combinations of w,, ..., w;_;. The next orthogonal
basis element v, will be obtained from w,, by subtracting off a suitable linear combination
of the previous orthogonal basis elements:

Vi =W —CVy— 0 = C Vg1
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Since vy,...,v,_; are already orthogonal, the orthogonality constraint
0= <Vkan> = <Wk7vj> —C <Vjan>
requires
W, V.
cj:M for j=1,...k—1 (4.18)
| v, |

In this fashion, we establish the general Gram—Schmidt formula

k—1
(Wi, v;)
i=1 i

The iterative Gram-Schmidt process (4.19), where we start with v, = w, and successively
construct v, ..., v, defines an explicit, recursive procedure for constructing the desired
orthogonal basis vectors. If we are actually after an orthonormal basis u,,...,u,, we
merely normalize the resulting orthogonal basis vectors, setting u, = v, /|| v, || for each

k=1,...,n.
Example 4.13. The vectors

1 1 2
w, = 1], wy,= (0], wy=| -2, (4.20)
-1 2 3

are readily seen to form a basis’ of R3. To construct an orthogonal basis (with respect to
the standard dot product) using the Gram—Schmidt process, we begin by setting

1
vV, =W, = 1
-1
The next basis vector is
4
1 1 3
W, -V -1
V2:W2—2721V1: 0] —— 1] = %
TV o N ;
3
The last orthogonal basis vector is
2 3 . 3 1
Wy -V, W - Vg - 1 3
Vg = Wq — v, — vo=| 2| ——= 1]l—-=|1]=1| =3
vy vl 3 T2 2
-1 5 _1
3 2

The reader can easily validate the orthogonality of v,,v,, v,.
An orthonormal basis is obtained by dividing each vector by its length. Since

14 7
vil=vE, vall=y5 vall= /3.

t This will, in fact, be a consequence of the successful completion of the Gram—Schmidt process
and does not need to be checked in advance. If the given vectors were not linearly independent, then
eventually one of the Gram—Schmidt vectors would vanish, v, = 0, and the iterative algorithm
would break down.
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we produce the corresponding orthonormal basis vectors

(4.21)

HS:-‘
Il
S S-Sk
MC
|
S 5 8
wC
Il
|
sh g sh

1

Example 4.14. Here is a typical problem: find an orthonormal basis, with respect to
the dot product, for the subspace W C R* consisting of all vectors that are orthogonal to
T
)

the given vector a = (1,2,—1,—3)" . The first task is to find a basis for the subspace.

Now, a vector x = (21, %y, T3, T,y )T is orthogonal to a if and only if
X-a=x;+2xy —253—32,=0.

Solving this homogeneous linear system by the usual method, we observe that the free
variables are z,, x4, z,, and so a (non-orthogonal) basis for the subspace is

-2 1 3
1 0 0
W, = ol Wy = 1|’ W3 = 0
0 0 1
To obtain an orthogonal basis, we apply the Gram—Schmidt process. First,
-2
1
v, =W, = 0
0
The next element is
1 —2 1
V=W, — w2 V1 0)_=2 L _ %
S A E 1 0 1
0 0 0
The last element of our orthogonal basis is
1 1
3 —2 5 2
3| 2
Wy -V, wsvy, |0 —6 1 51 2| 1
Vs = W3 — 2V17| ||2v27 -5 _% 5 | — .
vyl vy 0 0 5| 1 3
1 0 0 1
An orthonormal basis can then be obtained by dividing each v, by its length:
2 1 1
RV V30 V10
1 2 2
u=| V5 |, u, = ngo , u, = \/lfo (4.22)
0 V30 YT
2
0 0 710

Remark. The orthonormal basis produced by the Gram—Schmidt process depends on the
order of the vectors in the original basis. Different orderings produce different orthonormal
bases.
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The Gram—Schmidt process has one final important consequence. According to The-
orem 2.29, every finite-dimensional vector space — except {0} — admits a basis. Given
an inner product, the Gram—Schmidt process enables one to construct an orthogonal and
even orthonormal basis of the space. Therefore, we have, in fact, implemented a con-
structive proof of the existence of orthogonal and orthonormal bases of an arbitrary finite-
dimensional inner product space.

Theorem 4.15. Every non-zero finite-dimensional inner product space has an ortho-
normal basis.

In fact, if its dimension is > 1, then the inner product space has infinitely many
orthonormal bases.

Exercises
Note: For Exercises #1-7 use the Euclidean dot product on R"™.

4.2.1. Use the Gram—Schmidt process to determine an orthonormal basis for R3 starting with
the following sets of vectors:

STV B0 BB

4.2.2. Use the Gram—Schmidt process to construct an orthonormal basis for R4 starting with
the following sets of vectors: (a) (1,0, 1, O)T ,(0,1,0,—1 )T ,(1,0,0,1 )T ,(1,1,1,1 )T;
(b) (1,0,0,1)",(4,1,0,0)",(1,0,2,1)",(0,2,0,1)" .

1 0 2 2
4.2.3. Try the Gram—Schmidt procedure on the vectors _(1) , _} , :i , _g
1 2 0 1

What happens? Can you explain why you are unable to complete the algorithm?

4.2.4. Use the Gram—-Schmidt process to construct an orthonormal basis for the following
subspaces of R%: (a) the plane spanned by (0,2,1 )T ,(1,-2,—1 )T; (b) the plane defined
by the equation 2z —y + 32z = 0; (c) the set of all vectors orthogonal to (1,—1,—2 )T.

4.2.5. Find an orthogonal basis of the subspace spanned by the vectors w; = (1,—1,—-1,1,1 )T,
wo = (2,1,4,-4,2)" and wy = (5, -4, -3,7,1)".

4.2.6. Find an orthonormal basis for the following subspaces of R*: (a) the span of the vectors

1 —1 2
1 0 —1 . 2 1 0 -1 .
1| 1 9 |5 (b) the kernel of the matrix <3 9 1 _1 ); (¢) the coimage
0 1 1
—2 2
of the preceding matrix; (d) the image of the matrix g 73 _i ; (e) the cokernel
-2 4 5
of the preceding matrix; (f) the set of all vectors orthogonal to (1,1,—1,—1 )T.

4.2.7. Find orthonormal bases for the four fundamental subspaces associated with the following

matrices: 1 2 1
1 1 -1 0 2 1 0 1 0 0 -2 1

(a) . (b) L1 -1/, (o L1 1 1}, (d
-3 3 -1 0 -2
0 1 1 -1 2 0 1 1 9 3
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4.2.8. Construct an orthonormal basis of R? for the nonstandard inner products

@ xovh=x (3 9y ) vy =x" (T v@ o =x (7 ).

4.2.9. Construct an orthonormal basis for R? with respect to the inner products defined by the

4 =2 0 3 -1 1
following positive definite matrices: (a) | =2 3 -1, (b) [ -1 4 —-2|.
0 -1 2 1 -2 4
4.2.10. Redo Exercise 4.2.1 using
(i) the weighted inner product (v, w) = 3v; wy + 2vywy + V5 Ws;

2 -1 0
(i7) the inner product induced by the positive definite matrix K = (—1 2 -1 ) .
0 -1 2

¢ 4.2.11.(a) How many orthonormal bases does R have? (b) What about R?? (¢) Does your
answer change if you use a different inner product? Justify your answers.

4.2.12. True or false: Reordering the original basis before starting the Gram—Schmidt process
leads to the same orthogonal basis.

¢ 4.2.13. Suppose that W C R"™ is a proper subspace, and uy, ..., u,, forms an orthonormal
basis of W. Prove that there exist vectors u,,,,...,u, € R™\ W such that the complete
collection uy, ..., u,, forms an orthonormal basis for R". Hint: Begin with Exercise 2.4.20.

{ 4.2.14. Verify that the Gram—Schmidt formula (4.19) also produce an orthogonal basis of a
complex vector space under a Hermitian inner product.

4.2.15.(a) Apply the complex Gram—Schmidt algorithm from Exercise 4.2.14 to produce an
orthonormal basis starting with the vectors (1+ i,1— i )T ,(1—21,51 )T e C2.
(b) Do the same for (14 i,1—i,2—i)7 (1+2i,-2i,2—1)7, (1,1-2i,1)7 eC?.
4.2.16. Use the complex Gram—-Schmidt algorithm from Exercise 4.2.14 to construct
orthonormal bases for (a) the subspace spanned by (1 — i,1, O)T ,(0,3—1,2i )T;
(b) the set of solutions to (2 — i)z —2iy+ (1 —2i)z=0;
(¢) the subspace spanned by (—1i,1,—1, i )T,(O,Qi,l —i,-141 )T7(1, i,—i,1—2i )T.

Modifications of the Gram—Schmidt Process

With the basic Gram—-Schmidt algorithm now in hand, it is worth looking at a couple of
reformulations that have both practical and theoretical advantages. The first can be used
to construct the orthonormal basis vectors uy, ..., u,, directly from the basis wy,...,w,,.

We begin by replacing each orthogonal basis vector in the basic Gram-Schmidt for-
mula (4.19) by its normalized version u; = v,/ v;[|. The original basis vectors can be

expressed in terms of the orthonormal basis via a “triangular” system
Wy =Ty,
Wy = T1Uy + Ty Uy,

W3 = T3 + o3y + 733U, (4.23)

W, =T, 0+, Uy + e 7,0,

The coefficients r;; can, in fact, be computed directly from these formulas. Indeed, taking
the inner product of the equation for W with the orthonormal basis vector u; for i < j,
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we obtain, in view of the orthonormality constraints (4.6),

(Wi ;) = (ryyup+ 0 +rju, ) =rp(a,u)+ 0 g (u,,u) =7,
and hence
T = (W), (4.24)
On the other hand, according to (4.5),
2 2 2 2 2
[w;ll" = llryuy + - +rpullm=rg+ 0+ (4.25)
The pair of equations (4.24-25) can be rearranged to devise a recursive procedure to com-
pute the orthonormal basis. We begin by setting r; = || wy || and so u; = w,/ry;. At
each subsequent stage j > 2, we assume that we have already constructed uy,...,u;_;.

We then compute

Ty = (W,

u, ), for each i1=1,...,7—1. (4.26)

We obtain the next orthonormal basis vector u; by computing

W, =Tl — o T 505

J
rg =W ==t = - (@2n)
27

Running through the formulas (4.26-27) for j = 1,...,n leads to the same orthonormal
basis uy,...,u, produced by the previous version of the Gram—Schmidt procedure.

Example 4.16. Let us apply the revised algorithm to the vectors

1 1 2
w, = 11, wy,=|0], wy=| -2,
—1 2 3
of Example 4.13. To begin, we set 1
w V3
1 1
7“11:HW1||:\/§7 u = —= 7
11 ‘{5
) V3
The next step is to compute 4
o= (wyotg) = =y = fTwa =Ty = /2wy = P2z [
12 PER] \/gv 22 2 12 3 ) U2 Too \/;)E
Va2
The final step yields 51
r13:<w3,u1>:—\/§, To3 = (Wy,Uy) = PR
2
7 Wy — T3l — s U v
3 — T3l — Te3Uy 3
7’33:\/||W3||2_7“%3_7’§3:\/ja Uz = = | — vz
YT

As advertised, the result is the same orthonormal basis vectors that we previously found
in Example 4.13.

For hand computations, the original version (4.19) of the Gram—-Schmidt process is
slightly easier — even if one does ultimately want an orthonormal basis — since it avoids
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the square roots that are ubiquitous in the orthonormal version (4.26-27). On the other
hand, for numerical implementation on a computer, the orthonormal version is a bit faster,
since it involves fewer arithmetic operations.

However, in practical, large-scale computations, both versions of the Gram—Schmidt
process suffer from a serious flaw. They are subject to numerical instabilities, and so accu-
mulating round-off errors may seriously corrupt the computations, leading to inaccurate,
non-orthogonal vectors. Fortunately, there is a simple rearrangement of the calculation
that ameliorates this difficulty and leads to the numerically robust algorithm that is most
often used in practice, [21, 40, 66]. The idea is to treat the vectors simultaneously rather
than sequentially, making full use of the orthonormal basis vectors as they arise. More
specifically, the algorithm begins as before — we take u; = w, /|| wy|. We then subtract
off the appropriate multiples of u; from all of the remaining basis vectors so as to arrange
their orthogonality to u;. This is accomplished by setting

w,(cz):wk—(wk,u1>u1 for k=2,...,n.

The second orthonormal basis vector u, = wg) /l wéz) || is then obtained by normalizing.

We next modify the remaining W§2), e ,wg) to produce vectors

WJSS)ZW£2)_<W£2),UQ>U2= k=3,....n,

that are orthogonal to both u; and u,. Then u; = wéS)/H Wés) || is the next orthonormal

basis element, and the process continues. The full algorithm starts with the initial basis
(1)

vectors w; =w, ", j=1,...,n, and then recursively computes
() .
W . ; . =1,...,n
j (G+1) () () J= e
u. = — w =w,;’ —(w;” ,u.)u,, . 4.28
LW ' AT k=jtt..n 4%

(In the final phase, when j = n, the second formula is no longer needed.) The result is a

numerically stable computation of the same orthonormal basis vectors uy,...,u,,.

Example 4.17. Let us apply the stable Gram—Schmidt process to the basis vectors

2 0 1
ng) =W, = 2], Wél) =W, = 4], ng) =Wy = 2
-1 -1 -3
2
wib 3
The first orthonormal basis vector is u; = m = % . Next, we compute
W, L
3
@ _ O (1) = @ _ o (1) -
Wy =Wy —(wy,up)uy = 21, wy =wy — (w3, u)uy = 0
0 -2
_ L
w? V2
The second orthonormal basis vector is u, = || é) ” = % Finally,
? 0
_1 - _ V2
2 6
3 2 2 w
W()—Wé) <W£(’))’u2>u2: _% ) u3: ?3) = _TQ
_2 WP\ L%
3

The resulting vectors u;, u,, us form the desired orthonormal basis.



200 4 Orthogonality

Exercises

4.2.17. Use the modified Gram-Schmidt process (4.26-27) to produce orthonormal bases for the

—1 —1 0 0 1 2
spaces spanned by the following vectors: (a) 1), =1, (1|, (B)|1],10],[1],
2 1 3 1 1 0

2 0 1 0y /1 1 1
N (3 1] -1 2 1] (o] [ 0

(c) IERE 1 5 | (d) | 3], 20, =11, (¢e) [O],]1], 01, -1
0 | ; 1] | -1 0 1] |1 1 0

0 1 1 o/ \o) \-1 1

4.2.18. Repeat Exercise 4.2.17 using the numerically stable algorithm (4.28) and check that you
get the same result. Which of the two algorithms was easier for you to implement?

4.2.19. Redo each of the exercises in the preceding subsection by implementing the numerically
stable Gram—Schmidt process (4.28) instead, and verify that you end up with the same
orthonormal basis.

& 4.2.20. Prove that (4.28) does indeed produce an orthonormal basis. Explain why the result is
the same orthonormal basis as the ordinary Gram—Schmidt method.

4.2.21. Let ng) be the vectors in the stable Gram—Schmidt algorithm (4.28). Prove that the

coefficients in (4.23) are given by r,; = || wgi) [, and r;; = <w§-i) ,u, ) for i < j.

4.3 Orthogonal Matrices

Matrices whose columns form an orthonormal basis of R™ relative to the standard Euclidean
dot product play a distinguished role. Such “orthogonal matrices” appear in a wide range of
applications in geometry, physics, quantum mechanics, crystallography, partial differential
equations, [61], symmetry theory, [60], and special functions, [59]. Rotational motions
of bodies in three-dimensional space are described by orthogonal matrices, and hence they
lie at the foundations of rigid body mechanics, [31], including satellites, airplanes, drones,
and underwater vehicles, as well as three-dimensional computer graphics and animation for
video games and movies, [5]. Furthermore, orthogonal matrices are an essential ingredient
in one of the most important methods of numerical linear algebra: the @Q R algorithm for
computing eigenvalues of matrices, to be presented in Section 9.5.

Definition 4.18. A square matrix @ is called orthogonal if it satisfies

QTQ=QQ" =1. (4.29)
The orthogonality condition implies that one can easily invert an orthogonal matrix:

Qt=q". (4.30)

In fact, the two conditions are equivalent, and hence a matrix is orthogonal if and only
if its inverse is equal to its transpose. In particular, the identity matrix I is orthogonal.
Also note that if @ is orthogonal, so is Q7. The second important characterization of
orthogonal matrices relates them directly to orthonormal bases.
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Proposition 4.19. A matrix () is orthogonal if and only if its columns form an orthonor-
mal basis with respect to the Euclidean dot product on R™.

Proof: Let uy,...,u, be the columns of Q. Then uf,...,ul are the rows of the trans-
posed matrix Q7. The (i, j) entry of the product Q7'Q is given as the product of the ith row
of QT and the jth column of Q. Thus, the orthogonality requirement (4.29) implies

1, 14
u,-u;, = ulu, = T J,’ which are precisely the conditions (4.6) for u,,...,u,
! ! 0, i#J,
to form an orthonormal basis. Q.E.D.
In particular, the columns of the identity matrix produce the standard basis eq,...,e,

of R™. Also, the rows of an orthogonal matrix @ also produce an (in general different)
orthonormal basis.

Warning. Technically, we should be referring to an “orthonormal” matrix, not an “orthog-
onal” matrix. But the terminology is so standard throughout mathematics and physics that
we have no choice but to adopt it here. There is no commonly accepted name for a matrix
whose columns form an orthogonal but not orthonormal basis.

Example 4.20. A 2 x 2 matrix Q = is orthogonal if and only if its columns

b
d

u, = <c(z:) , Uy = (2), form an orthonormal basis of R?. Equivalently, the requirement

oto=(® <) (¢ b [(a*+c* ab+ed) (1 0
“\b d c d)  \ab+ecd V24+d*> ) \0 1)°
implies that its entries must satisfy the algebraic equations
a4+ =1, ab+cd =0, bV +d?=1.

The first and last equations say that the points (a,c¢)” and (b,d)" lie on the unit circle
in R?, and so

a = cosf, ¢ =sind, b = cos, d = sin,
for some choice of angles 6, 1. The remaining orthogonality condition is
0=ab+cd=cosf cost) +sinf siny = cos(d — 1),

which implies that 6 and ¢ differ by a right angle: ¢ = 6 + %r. The =+ sign leads to two
cases:

b= —sind, d = cos®, or b=sinb, d = —cos®.

As a result, every 2 x 2 orthogonal matrix has one of two possible forms

cosf) —sinf cosf sin 6
< sin 0 cos@) or ( sinfd — cosﬁ) , where 0<6<2m. (4.31)

The corresponding orthonormal bases are illustrated in Figure 4.2. The former is a right-
handed basis, as defined in Exercise 2.4.7, and can be obtained from the standard basis
e,, e, by a rotation through angle , while the latter has the opposite, reflected orientation.
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Figure 4.2.  Orthonormal Bases in R2.

Example 4.21. A 3 x 3 orthogonal matrix @) = (u; u, uy ) is prescribed by 3 mutually

perpendicular vectors of unit length in R3. For instance, the orthonormal basis constructed
1

in (4.21) corresponds to the orthogonal matrix @ =

S 2 3
> =~ >

. A complete

S 5l 8l
8l & &

o

list of 3 x 3 orthogonal matrices can be found in Exercises 4.3.4 and 4.3.

Lemma 4.22. An orthogonal matrix () has determinant det Q) = +1.
Proof: Taking the determinant of (4.29), and using the determinantal formulas (1.85),
(1.89), shows that
1 =det I =det(Q7Q) = det QT det Q = (det Q)?,
which immediately proves the lemma. Q.E.D.

An orthogonal matrix is called proper or special if it has determinant + 1. Geometrically,
the columns of a proper orthogonal matrix form a right-handed basis of R", as defined in
Exercise 2.4.7. An improper orthogonal matrix, with determinant — 1, corresponds to a
left handed basis that lives in a mirror-image world.

Proposition 4.23. The product of two orthogonal matrices is also orthogonal.

Proof: If
Q1TQ1 =1= Q2TQ2> then (@, QQ)T(QI Q) = Q2TQ1TQ1 Qe = QQTQQ =1,
and so the product matrix @), @, is also orthogonal. Q.E.D.

This multiplicative property combined with the fact that the inverse of an orthogonal
matrix is also orthogonal says that the set of all orthogonal matrices forms a group’. The

T The precise mathematical definition of a group can be found in Exercise 4.3.24. Although
they will not play a significant role in this text, groups underlie the mathematical formalization of
symmetry and, as such, form one of the most fundamental concepts in advanced mathematics and
its applications, particularly quantum mechanics and modern theoretical physics, [54]. Indeed,
according to the mathematician Felix Klein, cf. [92], all geometry is based on group theory.
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orthogonal group lies at the foundation of everyday Euclidean geometry, as well as rigid
body mechanics, atomic structure and chemistry, computer graphics and animation, and
many other areas.

Exercises
4.3.1. Determine which of the following matrices are (i) orthogonal; (i) proper orthogonal.
1 2 2
11 12 5 0 1 0 -3 3 3
(a) (_1 1), b ( B B @©-10 o0 (d 2 1 2|
3 13 00 -1 2 2 1
3 3 3
111 3 o 4 2 _VZ A3
i1 TR s VB v
@53 o4 B @|-3 2 2|
15 % ~% ~13 65 o2 oo
1 0 0

cosf sinf 0
4.3.2.(a) Show that R = (0 0 1 ), a reflection matrix, and Q = ( —sinf cosf O),
010 0 0 1
representing a rotation by the angle 6 around the z-axis, are both orthogonal. (b) Verify
that the products RQ and @ R are also orthogonal. (¢) Which of the preceding matrices,
R,Q,RQ,Q R, are proper orthogonal?

4.3.3. True or false: (a) If Q is an improper 2 x 2 orthogonal matrix, then Q2 = 1.
(b) If Q is an improper 3 x 3 orthogonal matrix, then Q% = 1.

O 4.3.4.(a) Prove that, for all 6, ¢, 1,

—cosp sint — cosf sinp cosy —sing siny + cos@ cosp costy sinf cosy

cos @ cos — cosf sin g siny sin ¢ cos + cosf cosp siny  sinf siny
Q —
sin § sin ¢ —sin@ cos¢ cosf

is a proper orthogonal matrix. (b) Write down a formula for Q_l.

Remark. It can be shown that every proper orthogonal matrix can be parameterized
in this manner; 6, ¢, are known as the Fuler angles, and play an important role in
applications in mechanics and geometry, [31; p. 147].

© 4.3.5.(a) Show that if y% + y% + y§ + yi = 1, then the matrix

v+ ys — 3 — i g(yngg 4 y4)2 2(Yo Yy — Y1 Y3)

Q=1 2(ys —v1ys) Yi—va+vs—vi 2sys+v19s)
2 2 2 2

2(1/23/4 +y1y3) 2(?43?14 _y1y2) Yl — Y3 — Y3 +yy

is a proper orthogonal matrix. The numbers y;,y5,y3,y, are known as Cayley-Klein
parameters. (b) Write down a formula for Q1. (c) Prove the formulas

ptov cosg,yzzcosgp_w gp;w sing,y4:sin

sing,ygzsin bty cos — ,
2 2 2 2

Y1 = cos 5 5

relating the Cayley—Klein parameters and the Euler angles of Exercise 4.3.4, cf. [31; §§4-5].

{ 4.3.6.(a) Prove that the transpose of an orthogonal matrix is also orthogonal. (b) Explain
why the rows of an n X n orthogonal matrix also form an orthonormal basis of R".

4.3.7. Prove that the inverse of an orthogonal matrix is orthogonal.

4.3.8. Show that if Q) is a proper orthogonal matrix, and R is obtained from @ by
interchanging two rows, then R is an improper orthogonal matrix.
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4.3.9. Show that the product of two proper orthogonal matrices is also proper orthogonal.
What can you say about the product of two improper orthogonal matrices? What about an

improper times a proper orthogonal matrix?
4.3.10. True or false: (a) A matrix whose columns form an orthogonal basis of R" is an

orthogonal matrix. (b) A matrix whose rows form an orthonormal basis of R™ is an
orthogonal matrix. (¢) An orthogonal matrix is symmetric if and only if it is a diagonal

matrix.
4.3.11. Write down all diagonal n x n orthogonal matrices.
{ 4.3.12. Prove that an upper triangular matrix U is orthogonal if and only if U is a diagonal
matrix. What are its diagonal entries?

4.3.13.(a) Show that the elementary row operation matrix corresponding to the interchange of
two rows is an improper orthogonal matrix. (b) Are there any other orthogonal elementary

matrices?

4.3.14. True or false: Applying an elementary row operation to an orthogonal matrix produces
an orthogonal matrix.

4.3.15.(a) Prove that every permutation matrix is orthogonal. (b) How many permutation
matrices of a given size are proper orthogonal?

< 4.3.16.(a) Prove that if Q is an orthogonal matrix, then [|Qx || = ||x|| for every vector x € R™,
where ||-|| denotes the standard Euclidean norm. (b) Prove the converse: if ||@x || = ||x]||
for all x € R", then @ is an orthogonal matrix.

¢ 4.3.17. Show that if AT = —A s any skew-symmetric matrix, then its Cayley Transform
Q = (I — A)71(I 4+ A) is an orthogonal matrix. Can you prove that I — A is always
invertible?

4.3.18. Suppose S is an n X n matrix whose columns form an orthogonal, but not orthonormal,
basis of R™. (a) Find a formula for ™! mimicking the formula Q™! = Q7 for an
orthogonal matrix. (b) Use your formula to determine the inverse of the wavelet matrix
W whose columns form the orthogonal wavelet basis (4.9) of R%.

& 4.3.19. Let vq,...,v,, and wq,...,w,, be two sets of linearly independent vectors in R™. Show
that all their dot products are the same, so v, - v; = w; - w; forall i,j = 1,...,n, if and
only if there is an orthogonal matrix @ such that w, = Qv, forall i =1,...,n.

4.3.20. Suppose u,...,u; form an orthonormal set of vectors in R"™ with & < n. Let
Q@ = (uy uy ... u; ) denote the n x k matrix whose columns are the orthonormal vectors.

(a) Prove that QTQ = I,.(b)Is QT = 1,7
& 4.3.21. Let uy,...,u, and @,..., 1, be orthonormal bases of an inner product space V.

n
Prove that G, = > ;59 fori=1,...,n, where Q = (qij) is an orthogonal matrix.
j=1

4.3.22. Let A be an m X n matrix whose columns are nonzero, mutually orthogonal vectors in
R™. (a) Explain why m > n. (b) Prove that ATA is a diagonal matrix. What are the

diagonal entries? (¢) Is AAT diagonal?

{$ 4.3.23. Let K > 0 be a positive definite n x n matrix. Prove that an n X n matrix S satisfies
STKS =1 if and only if the columns of S form an orthonormal basis of R with respect to
the inner product (v, w) = v’ Kw.

© 4.3.24. Groups: A set of n x n matrices G C M,, ., is said to form a group if

(1) whenever A, B € G, so is the product AB € G, and
(2) whenever A € G, then A is nonsingular, and A leq.



4.3 Orthogonal Matrices 205

(a) Show that I € G. (b) Prove that the following sets of n x n matrices form a group:
(i) all nonsingular matrices; (i¢) all nonsingular upper triangular matrices; (4ii) all
matrices of determinant 1; (v) all orthogonal matrices; (v) all proper orthogonal matrices;
(vi) all permutation matrices; (viz) all 2 x 2 matrices with integer entries and determinant
equal to 1. (¢) Explain why the set of all nonsingular 2 X 2 matrices with integer entries
does not form a group. (d) Does the set of positive definite matrices form a group?

© 4.3.25. Unitary matrices: A complex, square matrix U is called unitary if it satisfies vtu = I,

where Ut = UT denotes the Hermitian adgjoint in which one first transposes and then
takes complex conjugates of all entries. (a) Show that U is a unitary matrix if and only if
vl =ut. (b) Show that the following matrices are unitary and compute their inverses:

1 1 1 1 1 1 1

% \% V3 V3 V3 o2 22

- 2 V2 PO I U | i1 i Nl 2 2 T3 T3
@Y% M@ s stz a3 2 b (i) I 1 1 _1
Vi oVz U SO U SR 2 T2 2 T2

V3 2v3 2 2v3 ' 2 % -4 _% 1

(¢) Are the following matrices unitary?
: 2 1+2i 11421 —4-2i N .
(@) (1721 3 ) (”>3<2741 7271>’ (i) (5 _12 )
13 13
(d) Show that U is a unitary matrix if and only if its columns form an orthonormal basis of

C"™ with respect to the Hermitian dot product. (e) Prove that the set of unitary matrices
forms a group, as defined in Exercise 4.3.24.

The QR Factorization

The Gram—Schmidt procedure for orthonormalizing bases of R™ can be reinterpreted as
a matrix factorization. This is more subtle than the LU factorization that resulted from
Gaussian Elimination, but is of comparable significance, and is used in a broad range of
applications in mathematics, statistics, physics, engineering, and numerical analysis.

Let wy,...,w,, be a basis of R”, and let u,,...,u, be the corresponding orthonormal
basis that results from any one of the three implementations of the Gram—Schmidt process.
We assemble both sets of column vectors to form nonsingular n X n matrices

A=(w; wy ... W, ), Q=(u, uy, ... u,).
Since the u; form an orthonormal basis, @) is an orthogonal matrix. In view of the matrix

multiplication formula (2.13), the Gram—Schmidt equations (4.23) can be recast into an
equivalent matrix form:

iy Tig - Tin
0 1y ... Ty,

A=QR, where R= . o . (4.32)
0 o ... r

nn

is an upper triangular matrix whose entries are the coefficients in (4.26-27). Since the
Gram—Schmidt process works on any basis, the only requirement on the matrix A is that
its columns form a basis of R™, and hence A can be any nonsingular matrix. We have
therefore established the celebrated Q@ R factorization of nonsingular matrices.

Theorem 4.24. Every nonsingular matrix can be factored, A = @ R, into the product of
an orthogonal matrix ) and an upper triangular matrix R. The factorization is unique if
R is positive upper triangular, meaning that all its diagonal entries of are positive.
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Q R Factorization of a Matriz A

start

for j=1 ton

2
set rJ-—\/alj —5—(14
if =0, stop; print “A has linearly dependent columns”

else for i=1ton
set a;; =a;;/r;;
next 4
for k=75+1 ton
Set Ty =ay0y + o 0
for i=1 ton
set a;, = a;, — Ay Ty
next 1
next k
next j

end

The proof of uniqueness is relegated to Exercise 4.3.30.

11 2
Example 4.25. The columns of the matrix A = 1 0 —2 | are the same basis
-1 2 3

vectors considered in Example 4.16. The orthonormal basis (4.21) constructed using the
Gram-—Schmidt algorithm leads to the orthogonal and upper triangular matrices

1 4 2 1
i vE Vi V3 -5 —V3
— 1 1 3 _ V14 V21
=\ B vE “vm | =10 7 % (4.33)
15 1 0 0 V7
V3 Va2 Vi v2

The reader may wish to verify that, indeed, A = Q R.

While any of the three implementations of the Gram—-Schmidt algorithm will produce
the @ R factorization of a given matrix A = (w, w, ... w, ), the stable version, as encoded
in equations (4.28), is the one to use in practical computations, since it is the least likely to
fail due to numerical artifacts produced by round-off errors. The accompanying pseudocode
program reformulates the algorithm purely in terms of the matrix entries a;; of A. During
the course of the algorithm, the entries of the matrix A are successively overwritten; the
final result is the orthogonal matrix @) appearing in place of A. The entries r;; of R must
be stored separately.

2 1 0 0
. 1 210 . .
Example 4.26. Let us factor the matrix A = 0 1 2 1 | using the numerically
0 0 1 2

stable @ R algorithm. As in the program, we work directly on the matrix A, gradually
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changing it into orthogonal form. In the first loop, we set 7,;, = /5 to be the norm
of the first column vector of A. We then normalize the first column by dividing by
2
7 1 00
. .l 5= 210 . s 1
r11; the resulting matrix is | V5 The next entries 7, = 75 T3 = U
0 1 2 1
0 0 1 2

r14 = 0, are obtained by taking the dot products of the first column with the other three
columns. For j = 1,2,3, we subtract ry; times the first column from the 4t column;

2 3 2
v 5 75 0
1 6 4
the result V5 5 5 is a matrix whose first column is normalized to have
0 1 2 1
0 0 1 2

unit length, and whose second, third and fourth columns are orthogonal to it. In the

next loop, we normalize the second column by dividing by its norm r,, = 1/%, and so

2 _3 _2
V5 V70 5
1 6 4
obtain the matrix | V5 \/?0 5 We then take dot products of the second
0 e 2 1
0 0 1 2
column with the remaining two columns to produce ry; = %, Toy = \/%. Subtract-
ing these multiples of the second column from the third and fourth columns, we obtain
2 3 2 3
V5 Vo 1 1
1 6 _4 _3
V5 \/5% Z 97 , which now has its first two columns orthonormalized, and or-
0 J% 7 u
0 0 1 2
thogonal to the last two columns. We then normalize the third column by dividing by
2 _ 3 2 3
NG V70 105 14
1 6 _ 4 _3
15 s 11 V5 V70 105 : 20
r33 = /=, yielding 0 Vs 5 . Finally, we subtract rq, = Wi times
V70 105 14
7
0 0 = 2

the third column from the fourth column. Dividing the resulting fourth column by its norm
Tyy = \/% results in the final formulas,

e 0 0 o0 ¥

for the A = @ R factorization.
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Ill-Conditioned Systems and Householder’s Method

The @ R factorization can be employed as an alternative to Gaussian Elimination to solve
linear systems. Indeed, the system

Ax=Db becomes QRx =D, and hence Rx = QTb, (4.34)

because @' = Q7 is an orthogonal matrix. Since R is upper triangular, the latter system
can be solved for x by Back Substitution. The resulting algorithm, while more expensive
to compute, offers some numerical advantages over traditional Gaussian Elimination, since
it is less prone to inaccuracies resulting from ill-conditioning.

Example 4.27. Let us apply the A = Q R factorization

1 4 2 1
L1 2 Govie va\ (V3 -5 V3
1 0 —2| = 1 1 3 0 V14 V21
V3 Va2 V14 V3 V2
-2 3 1 5 __1 0 0 VI
V3 V42 V14 V2
that we found in Example 4.25 to solve the linear system Ax = (0, 74,5)T. We first
compute
1 1 1 3 \/g
V3 V3 V3 0 -
Qb= 4+ L 5 4| = V21
| Va2 V42 V42 o o V2
2 .3 1 5 V7
V14 V14 V14 V2
We then solve the upper triangular system
1
S VAN L
— Vid V21 _ V21
Rx=0 7 7% =| v
o o vz
V2 V2

by Back Substitution, leading to the solution x = ( —2,0,1 )T.

In computing the @ R factorization of a mildly ill-conditioned matrix, one should employ
the stable version (4.28) of the Gram—Schmidt process. However, yet more recalcitrant
matrices require a completely different approach to the factorization, as formulated by the
mid-twentieth-century American mathematician Alston Householder. His idea was to use a
sequence of certain simple orthogonal matrices to gradually convert the matrix into upper
triangular form.

Consider the Householder or elementary reflection matriz

H=1-2uu’, (4.35)

in which u is a unit vector (in the Euclidean norm). Geometrically, the matrix H represents
a reflection of vectors through the subspace

ut={v|v-u=0} (4.36)

consisting of all vectors orthogonal to u, as illustrated in Figure 4.3. It is a symmetric
orthogonal matrix, and so

HT = H, H?>=1, H'=H. (4.37)
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Figure 4.3. Elementary Reflection Matrix.

The proof is straightforward: symmetry is immediate, while

HHT = H? = (I —2uu®) (I —2uu?) =1 —4uu? + 4u(@Tu)u’ =1,
since, by assumption, u’u = ||ul|> = 1. Thus, by suitably forming the unit vector u, we

can construct a Householder matrix that interchanges any two vectors of the same length.

Lemma 4.28. Let v,w € R" with ||v|| = |w]. Set u = (v—w)/||v—w]|. Let H =
I —2uu” be the corresponding elementary reflection matrix. Then Hv = w and Hw = v.

Proof: Keeping in mind that v and w have the same Euclidean norm, we compute

_ T
HV:(If2uuT)V:v - 2(v w)(v v2v) v
[v—wll
[v]?—w-v
_V_22||V||272VW( w=v—(Vv—w)=w
The proof of the second equation is similar. Q.E.D.

In the first phase of Householder’s method, we introduce the elementary reflection matrix
that maps the first column v, of the matrix A to a multiple of the first standard basis
vector, namely w, = || v, || e;, noting that || v, | = | wy||. Assuming v, # ce,, we define
the first unit vector and corresponding elementary reflection matrix as

vi—lville

T
u, = H =1-2uu;.

v =llvylle
On the other hand, if v; = ce; is already in the desired form, then we set u; = 0 and
H, = 1. Since, by the lemma, H,;v, = w;, when we multiply A on the left by H,, we
obtain a matrix

" %z 43 - gy

0 Qgg Qg3 ... gy

A, =H A= 0 ag agy ... ag,
0 a,, a,5 ... a,,

whose first column is in the desired upper triangular form.
In the next phase, we construct a second elementary reflection matrix to make all the
entries below the diagonal in the second column of A, zero, keeping in mind that, at the
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same time, we should not mess up the first column. The latter requirement tells us that

the vector used for the reflection should have a zero in its first entry. The correct choice is

to set

= ~ o~ ~ T Vo — [ valles T

Vo = (0,099, g0, ..., Ayps ) Uy =~ Hy=1-2uyu,.
CEem e vy = 12 lley |7

As before, if v, = ce,, then u, = 0 and H, = I. The net effect is

11 T2 Q13 --- Gpy
0 719y Gy ... Gy,

Ay =H, A, = 0 0 as3 ... asy, ’
0 0 a, ... a,,

and now the first two columns are in upper triangular form.

The process continues; at the kth stage, we are dealing with a matrix A, whose first
k — 1 columns coincide with the first £ columns of the eventual upper triangular matrix R.
Let v, denote the vector obtained from the k'" column of A, by setting its initial k — 1
entries equal to 0. We define the k£t Householder vector and corresponding elementary
reflection matrix by

w, =%, — ||V e w — wy/llwyll, if  wy, #0,
k k k1l Cks k 0, it w, =0, (4.38)
H,=1-2u,u}, Ay =H Ay

The process is completed after n — 1 steps, and the final result is
R=H, (A, ,=H, H, , - HA=Q"A,  where Q=HH, - H,

n

is an orthogonal matrix, since it is the product of orthogonal matrices, cf. Proposition 4.23.
In this manner, we have reproduced al Q R factorization of

A=QR=H,H, - H,_|R. (4.39)

Example 4.29. Let us implement Householder’s Method on the particular matrix

11 2
A= 1 0 =2
-1 2 3
considered earlier in Example 4.25. The first Householder vector
1 1 —.7321
o= 1] -Vv3[lo]= 1
-1 0 -1
leads to the elementary reflection matrix
bT774 5774 —.5774 1.7321 —.5774 —1.7321
H, = 5774 2113 7887 |, whereby A, = H{A = 0 2.1547  3.0981
—.5774 7887 2113 0 —.1547 —2.0981

T The upper triangular matrix R may not have positive diagonal entries; if desired, this can be
easily fixed by changing the signs of the appropriate columns of Q.
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To construct the second and final Householder matrix, we start with the second column of
A, and then set the first entry to 0; the resulting Householder vector is

0 0 0
vy =| 21547 | —2.1603| 1 | = [ —.0055
—.1547 0 —.1547
Therefore,
1 0 0 1.7321 —.5774 —1.7321
H,=10 9974 —.0716 |, andso R=H,A,= 0 2.1603  3.2404
0 —.0716 —.9974 0 0 1.8708

is the upper triangular matrix in the Q R decomposition of A. The orthogonal matrix @
is obtained by multiplying the reflection matrices:

5774 6172 .5345
Q=HH, = 57741543 —.8018
—.5774 7715 —.2673

)

which numerically reconfirms the previous factorization (4.33).

Remark. If the purpose of the Q R factorization is to solve a linear system via (4.34), it
is not necessary to explicitly multiply out the Householder matrices to form @Q; we merely

need to store the corresponding unit Householder vectors uy,...,u, ;. The solution to

Ax=QRx=b can be found by solving Rx=H, H, ,---Hb (4.40)

by Back Substitution. This is the method of choice for moderately ill-conditioned systems.

Severe ill-conditioning will defeat even this ingenious approach, and accurately solving such
systems can be an extreme challenge.

Exercises

4.3.26. Write down the @ R matrix factorization corresponding to the vectors in Example 4.17.

4.3.27. Find the Q R factorization of the following matrices: (a) (; _‘;’>7 (b) (g ‘;’),
2 1 -1 0 1 2 0 0 2 1 % 1 (1)
@[ o 1 3|, @[-11 1|, @ o041], O|] ] 5
-1 -1 1 -1 1 3 -1 0 1 101 1

4.3.28. For each of the following linear systems, find the Q R factorization of the coefficient

matrix, and then use your factorization to solve the system: (1) <_1 §) (Z) = (_; ),

2 1 -1\ (= 2 1 1 0\ [z 0
(i) (1 0 2) (y) = (—1)7 (did) (—1 0 1) (y) = (1)
2 -1 3 z 0 0 -1 1 z 0

# 4.3.29. Use the numerically stable version of the Gram—Schmidt process to find the Q R
factorizations of the 3 x 3,4 x 4 and 5 x 5 versions of the tridiagonal matrix that has 4’s
along the diagonal and 1’s on the sub- and super-diagonals, as in Example 1.37.

{ 4.3.30. Prove that the Q R factorization of a matrix is unique if all the diagonal entries of R
are assumed to be positive. Hint: Use Exercise 4.3.12.
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© 4.3.31.(a) How many arithmetic operations are required to compute the @ R factorization of an
n X n matrix? (b) How many additional operations are needed to utilize the factorization
to solve a linear system Ax = b via (4.34)? (c¢) Compare the amount of computational
effort with standard Gaussian Elimination.

© 4.3.32. Suppose A is an m X n matrix with rank A = n. (a) Show that applying the Gram—
Schmidt algorithm to the columns of A produces an orthonormal basis for img A. (b) Prove
that this is equivalent to the matrix factorization A = Q R, where @ is an m X n matrix
with orthonormal columns, while R is a nonsingular n X n upper triangular matrix.
(¢) Show that the Q R program in the text also works for rectangular, m x n, matrices as
stated, the only modification being that the row indices ¢ run from 1 to m. (d) Apply this
method to factor

() w1 w2
@2 8] @ | 1 1| G| 3 2| @ |20 )
0 2 4 1 0o 5 11 -2

(e) Explain what happens if rank A < n.

© 4.3.33.(a) According to Exercise 4.2.14, the Gram—Schmidt process can also be applied to
produce orthonormal bases of complex vector spaces. In the case of C™, explain how this is
equivalent to the factorization of a nonsingular complex matrix A = U R into the product of
a unitary matrix U (see Exercise 4.3.25) and a nonsingular upper triangular matrix R.
(b) Factor the following complex matrices into unitary times upper triangular:

. . . P10 i 1 i
(i) (_11 2.1), (ii) (}J_” 2_‘.1>, Gi) [1 1 1], ) [1—i 0o 141
! ! ! 0 1 i -1 243i 1

(¢) What can you say about uniqueness of the factorization?
4.3.34.(a) Write down the Householder matrices corresponding to the following unit vectors:

. T .. T ... T . T .
(i) (1,0)7, (4) (%, %) , (1) (0,1,0)7, (i) (%,O,—%) . (b) Find all vectors
fixed by a Householder matrix, i.e., Hv = v — first for the matrices in part (a), and then
in general. (c) Is a Householder matrix a proper or improper orthogonal matrix?

4.3.35. Use Householder’s Method to solve Exercises 4.3.27 and 4.3.29.

& 4.3.36. Let H, = Q,, R,, be the Q R factorization of the n x n Hilbert matrix (1.72). (a) Find
Q,, and R, for n = 2,3,4. (b) Use a computer to find @,, and R, for n = 10 and 20.
(¢) Let x* € R™ denote the vector whose ith entry is # = (—1)%i/(i 4+ 1). For the values of
n in parts (a) and (b), compute y* = H, x*. Then solve the system H,x = y* () directly
using Gaussian Elimination; (i) using the @ R factorization based on(4.34); (i) using
Householder’s Method. Compare the results to the correct solution x* and discuss the pros
and cons of each method.

4.3.37. Write out a pseudocode program to implement Householder’s Method. The input
should be an n x n matrix A and the output should be the Householder unit vectors
uy,...,u,_; and the upper triangular matrix R. Test your code on one of the examples in
Exercises 4.3.26-28.

4.4 Orthogonal Projections and Orthogonal Subspaces

Orthogonality is important, not just for individual vectors, but also for subspaces. In this
section, we develop two concepts. First, we investigate the orthogonal projection of a vector
onto a subspace, an operation that plays a key role in least squares minimization and data
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w

Figure 4.4. The Orthogonal Projection of a Vector onto a Subspace.

fitting, as we shall discuss in Chapter 5. Second, we develop the concept of orthogonality
for a pair of subspaces, culminating with a proof of the orthogonality of the fundamental
subspaces associated with an m x n matrix that at last reveals the striking geometry that
underlies linear systems of equations and matrix multiplication.

Orthogonal Projection

Throughout this section, W C V will be a finite-dimensional subspace of a real inner
product space. The inner product space V is allowed to be infinite-dimensional. But,
to facilitate your geometric intuition, you may initially want to view W as a subspace of
Euclidean space V= R™ equipped with the ordinary dot product.

Definition 4.30. A vector z € V is said to be orthogonal to the subspace W C V if it is
orthogonal to every vector in W, so (z,w) =0 for all w € W.

Given a basis wy,...,w,, of the subspace W, we note that z is orthogonal to W if
and only if it is orthogonal to every basis vector: (z,w,) = 0 for ¢ = 1,...,n. Indeed,
any other vector in W has the form w = ¢;wy; + -+ + ¢, w,,, and hence, by linearity,
(z,w)=c(z,w;)+--+¢c,(z,w,) =0, as required.

Definition 4.31. The orthogonal projection of v onto the subspace W is the element
w € W that makes the difference z = v — w orthogonal to W.

The geometric configuration underlying orthogonal projection is sketched in Figure 4.4.
As we shall see, the orthogonal projection is unique. Note that v = w + z is the sum of
its orthogonal projection w € V' and the perpendicular vector z 1. W.

The explicit construction is greatly simplified by taking an orthonormal basis of the
subspace, which, if necessary, can be arranged by applying the Gram—Schmidt process
to a known basis. (The direct construction of the orthogonal projection in terms of a
non-orthogonal basis appears in Exercise 4.4.10.)

Theorem 4.32. Let uy,...,u, be an orthonormal basis for the subspace W C V. Then
the orthogonal projection of v € V onto w € W is given by

w=cu + -+ +c,u, where ;= (v,u;), i=1,...,n. (4.41)
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Proof: First, since uy,...,u, form a basis of the subspace, the orthogonal projection
element must be some linear combination thereof: w = ¢;u; +---+c¢, u,,. Definition 4.31
requires that the difference z = v — w be orthogonal to W, and, as noted above, it suffices
to check orthogonality to the basis vectors. By our orthonormality assumption,

0=(z,u;)=(v—-w,u;)=(v—cu — - —¢c,u,,u,)
=(v,u) —c(u,u)— - —c,(u,u)=(v,u)—c.

The coefficients ¢, = (v, u,) of the orthogonal projection w are thus uniquely prescribed
by the orthogonality requirement, which thereby proves its uniqueness. Q.E.D.
More generally, if we employ an orthogonal basis v, ..., v, for the subspace W, then
the same argument demonstrates that the orthogonal projection of v onto W is given by

v,V
w=a,v,+ - +a,v,, where  a, = <| - |Z2> , i=1,...,n. (4.42)

Vi

We could equally well replace the orthogonal basis by the orthonormal basis obtained by
dividing each vector by its length: u, = v,/||v;||. The reader should be able to prove that
the two formulas (4.41, 42) for the orthogonal projection yield the same vector w.

Example 4.33. Consider the plane W C R? spanned by the orthogonal vectors

1 1
vi=1[ -2, vo=11
1 1

According to formula (4.42), the orthogonal projection of v = (1,0, O) onto W is

1
(v,vy) (v,vy) 1 2
W=t Vy st Vg = =10
Ivall2 ™ divall 726 1
2
Alternatively, we can replace vy, v, by the orthonormal basis
1 1
v V6 V3
1 2 1
u, = = — = s u i
T =Tl = | 5
NG V3
Then, using the orthonormal version (4.41),
L L 1
NG V3 3
_ SR BT R T
W_<Vau1>ul+<vvu2>u2_\/6 NG +\/§ V3 - ?
1 1 1
V6 V3 2

The answer is, of course, the same. As the reader may notice, while the theoretical formula
is simpler when written in an orthonormal basis, for hand computations the orthogonal
basis version avoids having to deal with square roots. (Of course, when the numerical
computation is performed on a computer, this is not a significant issue.)

An intriguing observation is that the coefficients in the orthogonal projection formulas
(4.41-42) coincide with the formulas (4.4, 7) for writing a vector in terms of an orthonormal
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or orthogonal basis. Indeed, if v were an element of W, then it would coincide with its
orthogonal projection, w = v. (Why?) As a result, the orthogonal projection formula
include the orthogonal basis formula as a special case.

It is also worth noting that the same formulae occur in the Gram—Schmidt algorithm,
cf. (4.19). This observation leads to a useful geometric interpretation of the Gram—Schmidt
construction. For each k =1,...,n, let

W, =span{w,,...,w,} =span {v,..., v, } =span {u,...,u.} (4.43)

denote the k-dimensional subspace spanned by the first k& basis elements, which is the
same as that spanned by their orthogonalized and orthonormalized counterparts. In view
of (4.41), the basic Gram-Schmidt formula (4.19) can be re-expressed in the form v, =
W, —P},, Where p,, is the orthogonal projection of w;, onto the subspace W, _. The resulting
vector v, is, by construction, orthogonal to the subspace, and hence orthogonal to all of
the previous basis elements, which serves to rejustify the Gram-Schmidt construction.

Exercises

Note: Use the dot product and Euclidean norm unless otherwise specified.

1 —2 2 —1
4.4.1. Determine which of the vectors v; = (1),v2 = ( 2),v3 = (—1) \Vy = ( 3), is
0 2 -3 4

1 1 2
orthogonal to (a) the line spanned by ( 3) ; (b) the plane spanned by (—1) , (1) ;
— 1 1
(c) the plane defined by * — y — 2z = 0; (d) the kernel of the matrix 3 :é :411 ;
-3 1 -1 0 3
(e) the image of the matrix 3 —1]; (f) the cokernel of the matrix 2 1 =2.
—1 0 31 =5

4.4.2. Find the orthogonal projection of the vector v =(1,1,1 )T onto the following subspaces,
using the indicated orthonormal/orthogonal bases: (a) the line in the direction
T
. T
(—%7 %, %) ; (b) the line spanned by (2,—1,3)"; (c) the plane spanned by
T T
(1, 1,0)T ,(—2,2, l)T; (d) the plane spanned by (—%, %,0) , ( 14—37 %,—% ) .

4.4.3. Find the orthogonal projection of v = (1,2,—1,2 )T onto the following subspaces:

1 2 1 2
(a) the span of 7; , (1) ; (b) the image of the matrix 7(1) :1)) ; (c) the kernel
1 —1 -1 1
. 1 -1 0 1 T
of the matrix _9 11 0) (d) the subspace orthogonal to a=(1,—-1,0,1)".
Warning. Make sure you have an orthogonal basis before applying formula (4.42)!
1 3 2
4.4.4. Find the orthogonal projection of the vector | 2 | onto the image of | 2 -2 |.
3 1 -2

4.4.5. Find the orthogonal projection of the vector v = (1,3,—1 )T onto the plane spanned
by (—1,2,1 )T ,(2,1,-3 )T by first using the Gram—Schmidt process to construct an
orthogonal basis.
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4.4.6. Find the orthogonal projection of v = (1,2,—1,2 )T onto the span of (1,—-1,2,5 )T and
(2,1,0,-1 )T using the weighted inner product (v, w) = 4v; w; + 3vgwy + 2v5 Wy + v, wy.
4.4.7. Redo Exercise 4.4.2 using
(4) the weighted inner product (v, w) = 2v, wy + 2vy wy + v3ws;

2 -1 0
(i7) the inner product induced by the positive definite matrix K = (—1 2 -1 ) .
0 -1 2
4.4.8.(a) Prove that the set of all vectors orthogonal to a given subspace V' C R™ forms
a subspace. (b) Find a basis for the set of all vectors in R* that are orthogonal to the
subspace spanned by (1,2,0,—1 )T, (2,0,3,1 )T‘
© 4.4.9. Let uy,...,u; be an orthonormal basis for the subspace W C R™. Let
A= (uj uy ... u;) be the m x k matrix whose columns are the orthonormal basis vectors,
and define P = A AT to be the corresponding projection matriz. (a) Given v € R", prove
that its orthogonal projection w € W is given by matrix multiplication: w = Pv.
(b) Prove that P = PT is symmetric. (c) Prove that P is idempotent: P? = P. Give

a geometrical explanation of this fact. (d) Prove that rank P = k. (e) Write out the
projection matrix corresponding to the subspaces spanned by

1 1 1

1 2 7 7 ? H 1

; V2 2 _2 1 2 2 2
(2) i ) (”) -3 I (7'”) \/6 I \/g ’ (“}) 1 I 1 ) 1
V2 1 1 1 ? 2 -2

3 NG ET 1 1

Ve V3 2 2 2

© 4.4.10. Let wy,...,w, be an arbitrary basis of the subspace W C R™. Let A = (wy,...
be the m x n matrix whose columns are the basis vectors, so that W = img A and
rank A = n. (a) Prove that the corresponding projection matriz P = A(ATA)~1AT
is idempotent: P2 = P. (b) Prove that P is symmetric. (¢) Prove that img P = W.
(d) (e) Prove that the orthogonal projection of v € R™ onto w € W is obtained by
multiplying by the projection matrix: w = Pv. (f) Show that if A is nonsingular, then
P = 1. How do you interpret this in light of part (e)? (g) Explain why Exercise 4.4.9 is
a special case of this result. (h) Show that if A = Q R is the factorization of A given in
Exercise 4.3.32, then P = QQ?. Why is P # 17

E

n)

4.4.11. Use the projection matrix method of Exercise 4.4.10 to find the orthogonal projection
of v=(1,0,0,0 )T onto the image of the following matrices:

5 1 0 2 -1 0 1 -1
-5 -1 2 -3 1 0 -1 2

@ | -, B o 11 @] 1 o @ | | ]
1 12 12 —2 -1 0

Orthogonal Subspaces

We now extend the notion of orthogonality from individual elements to entire subspaces
of an inner product space V.

Definition 4.34. Two subspaces W, Z C V are called orthogonal if every vector in W is
orthogonal to every vector in Z.

In other words, W and Z are orthogonal subspaces if and only if (w,z) = 0 for every
w € W and z € Z. In practice, one only needs to check orthogonality of basis elements,
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Figure 4.5.  Orthogonal Complement to a Line.

or, more generally, spanning sets.

Lemma 4.35. If wy,...,w; span W and z,,...,z; span Z, then W and Z are orthogonal
subspaces if and only if (w;,z;) =0forall i=1,...,k and j=1,...,L.

The proof of this lemma is left to the reader; see Exercise 4.4.26.

Example 4.36. Let VV = R3 have the ordinary dot product. Then the plane W C R3
defined by the equation 2x — y + 3z = 0 is orthogonal to the line 7 spanned by its normal
vector n = (2, —1,3)T. Indeed, every w = (m,ymj)T € W satisfies the orthogonality
condition w-n = 2z — y + 3z = 0, which is simply the equation for the plane.

Example 4.37. Let W be the span of w; = (1,-2,0, I)T, W, = (3,—5,2,1)T, and
let Z be the span of the vectors z, = (3,2,0,1)T, Zy = (1,0,71,71)T. We find that
W, Z| =W, Zy = Wy -Z = Wy -Zy = 0, and so W and Z are orthogonal two-dimensional

subspaces of R4 under the Euclidean dot product.

Definition 4.38. The orthogonal complement of a subspace W C V, denoted’ W+, is
defined as the set of all vectors that are orthogonal to W:

Wt={veV|(v,w)=0 forall we W}. (4.44)

If W is the one-dimensional subspace (line) spanned by a single vector w # 0 then we
also denote W+ by w, as in (4.36). One easily checks that the orthogonal complement
W+ is also a subspace. Moreover, W N W+ = {0}. (Why?) Keep in mind that the
orthogonal complement will depend upon which inner product is being used.

Example 4.39. Let W = {(,2¢,3t)" | t € R} be the line (one-dimensional subspace)
in the direction of the vector w; = (1,2,3 )T € R3. Under the dot product, its orthogonal

f And usually pronounced “W perp”
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Figure 4.6. Orthogonal Decomposition of a Vector.

complement W+ = Wf‘ is the plane passing through the origin having normal vector wy,
as sketched in Figure 4.5. In other words, z = (x, y, z)T € W+ if and only if

z-w, =z+2y+32=0. (4.45)

Thus, W+ is characterized as the solution space of the homogeneous linear equation (4.45),
or, equivalently, the kernel of the 1 x 3 matrix A = wl = (1 2 3). We can write the
general solution in the form

—2y—3z -2 -3
z = Y =y 1| += 0| =yz, + z2,,
z 0 1

where y, z are the free variables. The indicated vectors z; = (—2,1,0 )T, z, = (—3,0,1 )T7
form a (non-orthogonal) basis for the orthogonal complement W+,

Proposition 4.40. Suppose that W C V is a finite-dimensional subspace of an inner
product space. Then every vector v € V can be uniquely decomposed into v = w + z,
where w € W and z € W+.

Proof: We let w € W be the orthogonal projection of v .onto W. Then z = v — w is,
by definition, orthogonal to W and hence belongs to W+. Note that z can be viewed
as the orthogonal projection of v onto the complementary subspace W= (provided it is
finite-dimensional). If we are given two such decompositions, v = w + z = w + z, then
w — W = z — z. The left-hand side of this equation lies in W, while the right-hand side
belongs to W+. But, as we already noted, the only vector that belongs to both W and
W+ is the zero vector. Thus, w —w =0 =z — 2z, so w = w and z = z, which proves
uniqueness. Q.E.D.

As a direct consequence of Exercise 2.4.26, in a finite-dimensional inner product space,
a subspace and its orthogonal complement have complementary dimensions:

Proposition 4.41. If W C V is a subspace with dimW = n and dimV = m, then

dm W+ =m —n.

Example 4.42. Return to the situation described in Example 4.39. Let us decompose

the vector v = (1,0,0)T € R3 into a sum v = w + z of a vector w lying on the line W
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and a vector z belonging to its orthogonal plane W=, defined by (4.45). Each is obtained
by an orthogonal projection onto the subspace in question, but we only need to compute
one of the two directly, since the second can be obtained by subtracting the first from v.
Orthogonal projection onto a one-dimensional subspace is easy, since every basis is,
trivially, an orthogonal basis. Thus, the projection of v onto the line spanned by

T . (v,wy) T
w, =(1,2,3) is w:lez(ﬁ7%,%) )
1

The component in W+ is then obtained by subtraction:

T
z=v-w=(5 1)

Alternatively, one can obtain z directly by orthogonal projection onto the plane W+. But
you need to be careful: the basis found in Example 4.39 is not orthogonal, and so you will
need to either first convert to an orthogonal basis and then use the orthogonal projection
formula (4.42), or apply the more direct result in Exercise 4.4.10.

Example 4.43. Let W C R* be the two-dimensional subspace spanned by the orthog-

onal vectors w; = (1,1,0,1 )T and w, = (1,1,1, —2)T. Its orthogonal complement W=+
(with respect to the Euclidean dot product) is the set of all vectors v = (z,y,z,w)’ that
satisfy the linear system

v-w,=x+y+w=0, V-wyg=x+y+z—2w=0.

Applying the usual algorithm — the free variables are y and w — we find that the solution
space is spanned by

z, = (-1,1,0,0)", z, = (—1,0,3,1)"
which form a non-orthogonal basis for W+. An orthogonal basis
T T
ylzzlz(_1317070) ) y2:z2_%Z1:(_%a_%7331)
for W+ is obtained by a single Gram-Schmidt step. To decompose the vector v =
(1,0,0,0 )T = w + z, say, we compute the two orthogonal projections:

1 10 10 1 1
W_3W1+7W2 (21’2177 ) ew,

f%)T ewt.

«w—\

21
— v — f_l ilfi
Z=V—-W=—3Y 21y2 (2 21

Proposition 4.44. If W is a finite-dimensional subspace of an inner product space, then
WHt =w.

This result is a corollary of the orthogonal decomposition derived in Proposition 4.40.

Warning. Propositions 4.40 and 4.44 are not necessarily true for infinite-dimensional sub-
spaces. If dim W = oo, one can assert only that W C (W=)+. For example, it can be
shown, [19; Exercise 10.2.D], that on every bounded interval [a,b] the orthogonal com-
plement of the subspace of all polynomials P(°) ¢ C°[a,b] with respect to the L? inner
product is trivial: (P(>*))L = {0}. This means that the only continuous function that
satisfies

b
<x",f(x)>:/ 2" f(x)de =0 for all n=20,1,2,...
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is the zero function f(x) = 0. But the orthogonal complement of {0} is the entire space,
and so ((P(*))1)+ = COa,b] # P>,

The difference is that, in infinite-dimensional function space, a proper subspace W C V
can be dense', whereas in finite dimensions, every proper subspace is a “thin” subset that
occupies only an infinitesimal fraction of the entire vector space. However, this seeming
paradox is, interestingly, the reason behind the success of numerical approximation schemes
in function space, such as the finite element method, [81].

Exercises
Note: In Exercises 4.4.12—-15, use the dot product.

4.4.12. Find the orthogonal complement W of the subspaces W C R3 spanned by the
indicated vectors. What is the dimension of W in each case?

(BT 080

4.4.13. Find a basis for the orthogonal complement of the following subspaces of R®: (a) the
plane 3z 4+ 4y — 5z = 0; (b) the line in the direction (—2,1,3)7; (c) the image of the

1 2 -1 3
matrix (—2 0 2 1) ; (d) the cokernel of the same matrix.
-1 2 1 4

4.4.14. Find a basis for the orthogonal complement of the following subspaces of R*: (a) the
set of solutions to —z + 3y — 2z + w = 0; (b) the subspace spanned by (1,2, —1, S)T,

(—2,0,1,—-2)", (=1,2,0,1)"; (c) the kernel of the matrix in Exercise 4.4.13¢; (d) the
coimage of the same matrix.

4.4.15. Decompose each of the following vectors with respect to the indicated subspace as

v =w+z, wherew € W,z € W=. (a) v= (%)7 W = span { <_?> };

1 -3\ (-1 1 Lo
(b) v = 2 [, W = span 2 |, 0 i (e)v=1]0 ,I/V:ker<2 0 2);
-1 1 5 0
1
1 1 0 1
(d) v=|0|,W=img| -2 -1 0]; (e) v= 8 7W:ker(_é _(1) ? _§>
0 1 3 =5
1
4.4.16. Redo Exercise 4.4.12 using the weighted inner product (v ,w) = v; wy +2vy wy +3v5wy

instead of the dot product.

4.4.17. Redo Example 4.43 with the dot product replaced by the weighted inner product
(V, W) =v;w; + 205wy + 3vgwy + v wy.

{ 4.4.18. Prove that the orthogonal complement Wt of a subspace W C V is itself a subspace.

f In general, a subset W C V of a normed vector space is dense if, for every v € V| and every
€ > 0, one can find w € W with ||v — w|| < e. The Weierstrass Approximation Theorem, [19;
Theorem 10.2.2], tells us that the polynomials form a dense subspace of the space of continuous
functions, and underlies the proof of the result mentioned in the preceding paragraph.
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4.4.19. Let V =P™ denote the space of quartic polynomials, with the L? inner product
1
(p,q) = / 1p(:t) q(x)dx. Let W = P be the subspace of quadratic polynomials.
(a) Write down the conditions that a polynomial p € P® must satisfy in order to belong

to the orthogonal complement W= (b) Find a basis for and the dimension of wt.
(¢) Find an orthogonal basis for W= .

4.4.20. Let W C V. Prove that (a) W N W+ = {0}, (b) W C (WH)*.
4.4.21. Let V be an inner product space. Prove that (a) vt = {0}, (b) {O}J‘ =V.

4.4.22. Prove that if W, C W, are finite-dimensional subspaces of an inner product space,
then Wi D Wi

4.4.23.(a) Show that if W, Z C R"™ are complementary subspaces, then W and Z* are also
complementary subspaces. (b) Sketch a picture illustrating this result when W and Z are
lines in R2.
4.4.24. Prove that if W, Z are subspaces of an inner product space, then (VV—i—Z)L =wtnzt
(See Exercise 2.2.22(b) for the definition of the sum of two subspaces.)
{$ 4.4.25. Fill in the details of the proof of Proposition 4.44.
{ 4.4.26. Prove Lemma 4.35.

& 4.4.27. Let W C V with dimV' = n. Suppose wy,...,w,, is an orthogonal basis for W and
W, 11+, W, is an orthogonal basis for W, (a) Prove that the combination wq,...,w,,
forms an orthogonal basis of V. (b) Show that if v = ¢, w; +--- + ¢,, w,, is any vector in
V, then its orthogonal decomposition v = w + z is given by w = c; wy +---+¢c,,w,, € W
and z=c, 1 W, 1+ +c,w, ewt.

m

© 4.4.28. Consider the subspace W = {u(a) = 0 = u(b) } of the vector space C%[a, b] with the
usual L? inner product. (a) Show that W has a complementary subspace of dimension 2.
(b) Prove that there does not exist an orthogonal complement of W. Thus, an infinite-
dimensional subspace may not admit an orthogonal complement!

Orthogonality of the Fundamental Matrix Subspaces
and the Fredholm Alternative

In Chapter 2, we introduced the four fundamental subspaces associated with an m x n
matrix A. According to the Fundamental Theorem 2.49, the first two, the kernel (null
space) and the coimage (row space), are subspaces of R™ having complementary dimensions.
The second two, the cokernel (left null space) and the image (column space), are subspaces
of R™, also of complementary dimensions. In fact, more than this is true — the paired
subspaces are orthogonal complements with respect to the standard Euclidean dot product!

Theorem 4.45. Let A be a real m xn matrix. Then its kernel and coimage are orthogonal
complements as subspaces of R™ under the dot product, while its cokernel and image are
orthogonal complements in R™, also under the dot product:

ker A = (coimg A)* c R™, coker A = (img A)t c R™. (4.46)

Proof: A vector x € R™ lies in ker A if and only if Ax = 0. According to the rules of
matrix multiplication, the it entry of A x equals the vector product of the ith row r;-f of



222 4 Orthogonality

coimg A

img A coker A
ker A

Figure 4.7. The Fundamental Matrix Subspaces.

A and x. But this product vanishes, r x = r;, - x = 0, if and only if x is orthogonal

to r;. Therefore, x € ker A if and only if x is orthogonal to all the rows of A. Since the
rows span coimg A, this is equivalent to x lying in its orthogonal complement (coimg A)=,
which proves the first statement. Orthogonality of the image and cokernel follows by the
same argument applied to the transposed matrix AT . Q.E.D.

Combining Theorems 2.49 and 4.45, we deduce the following important characterization
of compatible linear systems.

Theorem 4.46. A linear system Ax = b has a solution if and only if b is orthogonal to
the cokernel of A.

Indeed, the system has a solution if and only if the right-hand side belongs to the image
of the coefficient matrix, b € img A, which, by (4.46), requires that b be orthogonal to its
cokernel. Thus, the compatibility conditions for the linear system A x = b can be written
in the form

y-b=0 for every y satisfying ATy =o. (4.47)

In practice, one only needs to check orthogonality of b with respect to a basis y,...,¥,,_,
of the cokernel, leading to a system of m — r compatibility constraints

y;,-b=0, i=1,....m—r. (4.48)

Here r = rank A denotes the rank of the coefficient matrix, and so m —r is also the number
of all zero rows in the row echelon form of A. Hence, (4.48) contains precisely the same
number of constraints as would be derived using Gaussian Elimination.

Theorem 4.46 is known as the Fredholm alternative, named after the Swedish mathe-
matician Ivar Fredholm. His primary motivation was to solve linear integral equations, but
his compatibility criterion was recognized to be a general property of linear systems, includ-
ing linear algebraic systems, linear differential equations, linear boundary value problems,
and so on.

Example 4.47. In Example 2.40, we analyzed the linear system Ax = b with coefficient

1 0 —1
matrix A = | 0 1 =2 |. Using direct Gaussian Elimination, we were led to a single
1 -2 3

compatibility condition, namely —b; + 2b, 4+ b3 = 0, required for the system to have a
solution. We now understand the meaning behind this equation: it is telling us that the
right-hand side b must be orthogonal to the cokernel of A. The cokernel is determined by
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solving the homogeneous adjoint system A7y = 0, and is the line spanned by the vector
y; = (—1,2,1)T. Thus, the compatibility condition requires that b be orthogonal to y;,
in accordance with the Fredholm alternative (4.48).

Example 4.48. Let us determine the compatibility conditions for the linear system
Ty — Ty +3T53=0;, —x;+2x,—4x3="0y, 22, +3x,+x3=05, x,+275=0,,

by computing the cokernel of its coefficient matrix

1 -1 3

-1 2 -4

A= 2 3 1
1 0 2

We need to solve the homogeneous adjoint system A7y = 0, namely
Yi =Y +2y3+ys =0, —y +2y+3y; =0, 3y, — 4y, +y; + 2y, =0.
Applying Gaussian Elimination, we deduce that the general solution
y=y; (~7,-5,1,0)" +y, (-2,-1,0,1)"

is a linear combination (whose coefficients are the free variables) of the two basis vectors
for coker A. Thus, the Fredholm compatibility conditions (4.48) are obtained by taking
their dot products with the right-hand side of the original system:

—Tby —5b, + by =0, —2b, — by + b, = 0.

The reader can check that these are indeed the same compatibility conditions that result
from a direct Gaussian Elimination on the augmented matrix (A \ b).

Remark. Conversely, rather than solving the homogeneous adjoint system, we can use
Gaussian Elimination on the augmented matrix (A | b) to determine the m — r basis
vectors yy,...,¥,,_, for coker A. They are formed from the coefficients of b,,...,b,, in
the m — r consistency conditions y, -b = 0 for ¢ = 1,...,m — r, arising from the all zero

rows in the reduced row echelon form.

We are now very close to a full understanding of the fascinating geometry that lurks
behind the simple algebraic operation of multiplying a vector x € R™ by an m X n matrix,
resulting in a vector b = Ax € R™. Since the kernel and coimage of A are orthogonal
complements in the domain space R™, Proposition 4.41 tells us that we can uniquely
decompose x = w + z, where w € coimg A, while z € ker A. Since Az = 0, we have

b=Ax=A(w+2z)=Aw.

Therefore, we can regard multiplication by A as a combination of two operations:
(i) The first is an orthogonal projection onto the coimage of A taking x to w.
(ii) The second maps a vector in coimg A C R™ to a vector in img A C R™, taking the
orthogonal projection w to the image vector b = Aw = Ax.
Moreover, if A has rank 7, then both img A and coimg A are r-dimensional subspaces,
albeit of different vector spaces. Each vector b € img A corresponds to a unique vector
w € coimg A. Indeed, if w,w € coimg A satisfy b = Aw = Aw, then A(w —w) =0, and
hence w — w € ker A. But, since the kernel and the coimage are orthogonal complements,
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the only vector that belongs to both is the zero vector, and hence w = w. In this manner,
we have proved the first part of the following result; the second is left as Exercise 4.4.38.

Theorem 4.49. Multiplication by an m x n matrix A of rank r defines a one-to-one
correspondence between the r-dimensional subspaces coimg A C R™ and img A C R™.
Moreover, if vq,...,v, forms a basis of coimg A then their images Avy,...,Av, form a
basis for img A.

In summary, the linear system Ax = b has a solution if and only if b € img A, or,
equivalently, is orthogonal to every vector y € coker A. If the compatibility conditions
hold, then the system has a unique solution w € coimg A that, by the definition of the
coimage, is a linear combination of the rows of A. The general solution to the system is
X = W + z, where w is the particular solution belonging to the coimage, while z € ker A is
an arbitrary element of the kernel.

Theorem 4.50. A compatible linear system Ax = b with b € img A = (coker A)* has a
unique solution w € coimg A satisfying Aw = b. The general solution is x = w + z, where
z € ker A. The particular solution w € coimg A is distinguished by the fact that it has the
smallest Euclidean norm of all possible solutions: ||w|| < | x| whenever Ax = b.

Proof: We have already established all but the last statement. Since the coimage and
kernel are orthogonal subspaces, the norm of a general solution x = w + z is

x> =l[w+z|*=w|*+2w-z+ 2] = | W[+ [z]* > | w]?
with equality if and only if z = 0. Q.E.D.

In practice, to determine the unique minimum-norm solution to a compatible linear
system, we invoke the orthogonality of the coimage and kernel of the coefficient matrix.

Thus, if z,,...,2,_, form a basis for ker A, then the minimum-norm solution x = w €
coimg A is obtained by solving the enlarged system
Ax =D, zlx =0, e zl  x=0. (4.49)

The associated (m + n — r) X n coeflicient matrix is simply obtained by appending the
(transposed) kernel vectors to the original matrix A. The resulting matrix is guaranteed
to have maximum rank n, and so, assuming b € img A, the enlarged system has a unique
solution, which is the minimum-norm solution to the original system Ax = b.

Example 4.51. Consider the linear system

1 -1 2 -2\ /= -1
0o 1 -2 1|y [ 1
1 3 =5 2|z " | 4 (4.50)
5 -1 9 -6/ \w 6

Applying the usual Gaussian Elimination algorithm, we discover that the coefficient matrix
has rank 3, and its kernel is spanned by the single vector z; = (1, —1,0,1 )T . The system
itself is compatible; indeed, the right-hand side is orthogonal to the basis cokernel vector

(2,24,—7,1)", and so satisfies the Fredholm condition (4.48). The general solution to the
linear system is x = (¢,3 — ¢, 1,t )T, where t = w is the free variable.
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To find the solution of minimum Euclidean norm, we can apply the algorithm described
in the previous paragraph.” Thus, we supplement the original system by the constraint
x
(1 -1 0 1) Z —r—y+w=0 (4.51)
w

that the solution be orthogonal to the kernel basis vector. Solving the combined linear

system (4.50-51) leads to the unique solution x = w = (1,2,1,1 )T, obtained by setting
the free variable t equal to 1. Let us check that its norm is indeed the smallest among all
solutions to the original system:

Iwll = V7 <|x[l=[(t,3—t1,6)"| = V38> =6t + 10,

where the quadratic function inside the square root achieves its minimum value of v/7 at
t = 1. It is further distinguished as the only solution that can be expressed as a linear
combination of the rows of the coefficient matrix:

wl =(1, 2, 1, 1)
=—4(1, =1, 2, —=2)—17(0, 1, =2, 1)+5(1, 3, =5, 2),

meaning that w lies in the coimage of the coefficient matrix.

Exercises

4.4.29. For each of the following matrices A, (i) find a basis for each of the four fundamental
subspaces; () verify that the image and cokernel are orthogonal complements; (ii7) verify
that the coimage and kernel are orthogonal complements:

1
11,
2

L 5 0 01 2 12 0
(a) <2 _4), W (1 2], @ [-10 =3], @/[-11 3
0 2 23 0 03 3

12 2 -1

314 2 7 RS 9 4 -5 2

@[t120 3, 0|2 @3 6 2 -3

2 7 3 oo s 1 -2 -3 1

2 4 -5 -2

4.4.30. For each of the following matrices, use Gaussian elimination on the augmented matrix
(A | b) to determine a basis for its cokernel:

1 -2 -2

1 3 1 1 3
(a) (2 :2), <b>( 2 6), (c) (1 - ) N
-3 -9 -13 6 5 9 1o

1 -2 2 -1
4431. Let A=| -2 4 -3 5. (a) Find a basis for coimg A. (b) Use Theorem 4.49
-1 2 0 7
to find a basis of img A. (c) Write each column of A as a linear combination of the basis
vectors you found in part (b).

T An alternative is to orthogonally project the general solution onto the coimage. The result is
the same.
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4.4.32. Write down the compatibility conditions on the following systems of linear equations by
first computing a basis for the cokernel of the coefficient matrix. (a) 2z +y = a,
x+4y=>b, —3z+2y=c¢; (b) z+2y+3z=a, —x+5y—22z=0b, 20 —3y+5z=c¢
(¢) oy + 2y +3x53 =0y, 29 +2x53 =0y, 30y +5x9+Tax3="03, —2x; +x9+4x3 =0y;
(d) x=3y+2z+w =a, dx—2y+22+3w=">b, bx—by+dz+4dw =c, 2z+4y—2z+w =d.

4.4.33. For each of the following m x m matrices, decompose the first standard basis vector

e, = w+z € R", where w € coimg A and z € ker A. Verify your answer by expressing w as
a linear combination of the rows of A.

1 -2 1 L2 1 -103 -1 1 1 -1 2
R O I NI EI O )|

4.4.34. For each of the following linear systems, (i) verify compatibility using the Fredholm
alternative, (4) find the general solution, and (éii) find the solution of minimum
Fuclidean norm:

21 — 4 6 2z +3y = -1, 67— 3y+9z =12
z —4y = —6, T — 2 =12,
(a) _$+2y_3 (b) 3z+Ty=1, (c) zz_y+3z_4
y_ bl —3x+2y=8, ?J -
Ty — 3Ty + Txg = —8§,
r+3y+5z=23, L 22 +x3*5 r—y+2z+3w =25,
—z44 =11 Lhm2ee - -1
(d) —z+4y+9z . (e) 4, — 3wy + 1024 = —5, (f) 3z—3y+5z+T7w=13,

20 +3y+4z2=0, —2x42y+2z+4w=0.

—221 +2x9 — 675 = 4.

4.4.35. Show that if A = AT is a symmetric matrix, then Ax = b has a solution if and only if
b is orthogonal to ker A.

& 4.4.36. Suppose vq,...,V, span a subspace V C R™. Prove that w is orthogonal to V if and

only if w € coker A, where A = (v, v,y ... v, ) is the matrix with the indicated columns.
1 -1 0 2
2 -2 0 4 . . . .
4.4.37. Let A= 1 11 -1l (a) Find an orthogonal basis for coimg A. (b) Find an
0 0 2 2

orthogonal basis for ker A. (c¢) If you combine your bases from parts (a) and (b), do you
get an orthogonal basis of R*? Why or why not?

< 4.4.38. Prove that if v,,..., v, are a basis of coimg A, then their images Av,,..., Av, are a
basis for img A.

4.4.39. True or false: The standard algorithm for finding a basis for ker A will always produce
an orthogonal basis.

{ 4.4.40. Is Theorem 4.45 true as stated for complex matrices? If not, can you formulate a
similar theorem that is true? What is the Fredholm alternative for complex matrices?

4.5 Orthogonal Polynomials

Orthogonal and orthonormal bases play, if anything, an even more essential role in func-
tion spaces. Unlike the Euclidean space R™, most of the obvious bases of a typical (finite-
dimensional) function space are not orthogonal with respect to any natural inner product.
Thus, the computation of an orthonormal basis of functions is a critical step towards sim-
plification of the analysis. The Gram—Schmidt algorithm, in any of the above formulations,
can be successfully applied to construct suitably orthogonal functions. The most impor-
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tant examples are the classical orthogonal polynomials that arise in approximation and
interpolation theory. Other orthogonal systems of functions play starring roles in Fourier
analysis and its generalizations, including wavelets, in quantum mechanics, in the solution
of partial differential equations by separation of variables, and a host of further applications
in mathematics, physics, engineering, numerical analysis, etc., [43, 54,62, 61, 77,79, 88].

The Legendre Polynomials

We shall construct an orthonormal basis for the vector space P(™ of polynomials of degree
< n. For definiteness, the construction will be based on the L? inner product

(p,q)= / p(t) q(t)dt (4.52)

-1
on the interval [—1,1]. The underlying method will work on any other bounded interval,
as well as for weighted inner products, but (4.52) is of particular importance. We shall
apply the Gram—Schmidt orthogonalization process to the elementary, but non-orthogonal
monomial basis 1, t, t2, ... t". Because

2

1

<t’“,tl>=/tk“dt: k+1+1
-1 0, k+1 odd,

odd-degree monomials are orthogonal to those of even degree, but that is all. We will use
q(t),q,(t),...,q,(t) to denote the resulting orthogonal polynomials. We begin by setting

k + 1 even, (4.53)

1
o) =1 wih el = [ a@?d=2
—1
According to formula (4.17), the next orthogonal basis polynomial is
(t,q) .
o) =t - |‘|]2 q0(t) =, with gl =2.
0

In general, the Gram—Schmidt formula (4.19) says we should define

k=1 .k
q.(t) = tF — Z ij(t) for k=1,2,....
J

We can thus recursively compute the next few orthogonal polynomials:

j=0

qQ(t):th%, ||QQ||2:%7
%(t):’fg_%ta ||Q3||2:%7
4 642, 3 2 128 (4.54)
qu(t) =1 — 2" + 52, a4l = 1155 >
q5(t>:t5_1570t3+2%t ||q6||2: 4%?5?9’
and so on. The reader can verify that they satisfy the orthogonality conditions
1
(a.0) = [ a@a0a=0 it
The resulting polynomials g, ¢;, s, . . . are known as the monict Legendre polynomials, in

honor of the eighteenth-century French mathematician Adrien-Marie Legendre, who first

tA polynomial is called monic if its leading coefficient is equal to 1.
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used them for studying Newtonian gravitation. Since the first n Legendre polynomials,
namely g, ...,q,_; span the subspace P(=1) of polynomials of degree < n — 1, the next
one, ¢,,, can be characterized as the unique monic polynomial that is orthogonal to every
polynomial of degree < n — 1:

(t*.,q,) =0, k=0,...,n—1. (4.55)

Since the monic Legendre polynomials form a basis for the space of polynomials, we can
uniquely rewrite any polynomial of degree n as a linear combination:

p(t) =coao(t) + g (H) + -+ +¢,q,(). (4.56)

In view of the general orthogonality formula (4.7), the coefficients are simply given by inner

products

1 1
¢, = <p7Qk2> _ . / p(t) q,.(t) dt, k=0,...,n. (4.57)
lael® gl /-

For example,
th= (1) + 200 + 5a0(t) = (' =58+ 55) +2( = 3) + 3,
where the coefficients can be obtained either directly or via (4.57):

11025 (! 175 !
Cy = —m thq,(t)dt =1, €3 = —

4 —
128 ), 3 1 qs(t)dt =0, and so on.

The classical Legendre polynomials, [59], are certain scalar multiples, namely

P.(t) = (2F)! k=0,1,2 4.58
k(t)_WQk(t)a =0,1,2,..., (4.58)
and so also define a system of orthogonal polynomials. The multiple is fixed by the re-
quirement that
P (1) =1, (4.59)
which is not so important here, but does play a role in other applications. The first few
classical Legendre polynomials are

Po(t):L HPO||2:2a
P1(t):tv ||P1||2:%7
Py(t) = 3° — 3, P = 2,

543 3 2 2 (4'60)
Py(t) = 5t° — 5t, | Psll” = %,
Pty =3¢ = 22+ 2, 1P % =%,
P5(t):%t5—i—5t3+%5t, ||P5||2:%7

and are graphed in Figure 4.8. There is, in fact, an explicit formula for the Legendre poly-
nomials, due to the early nineteenth-century mathematician, banker, and social reformer
Olinde Rodrigues.

Theorem 4.52. The Rodrigues formula for the classical Legendre polynomials is

1 d [ 2
Pk(t)zmﬁ(ﬁ_l)kv | Py Il = ST k=0,1,2,....  (461)
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Figure 4.8.  The Legendre Polynomials Py(t), ..., P;(t).

Thus, for example,

1 & 1 a4

_ 2 4 _ 2 4 __ 3544 15 42 3
PO =15 g ga - =g gn 00 =R W04

Proof of Theorem 4.52: Let

d7

R; () = 5 (2 — 1)k, (4.62)

which is evidently a polynomial of degree 2 k—j. In particular, the Rodrigues formula (4.61)
claims that Py (t) is a multiple of R, ,(t). Note that

d
dt Rj () = Rjpq (1) (4.63)
Moreover,
Rj,k(l) =0= Rj’k(— 1) whenever j <k, (4.64)

since, by the product rule, differentiating (t> — 1)* a total of j < k times still leaves at
least one factor of > — 1 in each summand, which therefore vanishes at t = +1. In order
to complete the proof of the first formula, let us establish the following result:

Lemma 4.53. If j < k, then the polynomial R, (t) is orthogonal to all polynomials of
degree < j — 1.

Proof: In other words,

1
(t'" R ,) = / 'R, . (t)dt =0, forall 0<i<j<k. (4.65)
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Since j > 0, we use (4.63) to write R, ,(t) = R/_, ;(t). Integrating by parts,

1
(1 R,,) = / R0

. 1 L .
= it' Ry (1) L}l - i/ltl_l Ry () dt = —i (75 Ry ),

where the boundary terms vanish owing to (4.64). In particular, setting ¢ = 0 proves
(1, Rj7k> =0 for all j > 0. We then repeat the process, and, eventually, for any j > 1,
<ti7Rj,k> =—i (! R )
=i(i— 1) (7 Ry yp) = - =(=D"i(i—1) - 3-2(1,R;_; ;) =0,
completing the proof. Q.E.D.

In particular, Ry, ;(¢) is a polynomial of degree k that is orthogonal to every polynomial
of degree < k — 1. By our earlier remarks, this implies that it must be a constant multiple,

Ry () = ¢, P (1),
of the kth Legendre polynomial. To determine ¢, we need only compare the leading terms:

d* s po d¥ oy (2k)! : (2k)! o
Rk,k(t):ﬁ(t —1) :ﬁ(t +):Tt +, while Pk(t)zmt +
We conclude that ¢, = 2% k!, which proves the first formula in (4.61). The proof of the
formula for || P, || can be found in Exercise 4.5.9. Q.E.D.

The Legendre polynomials play an important role in many aspects of applied math-
ematics, including numerical analysis, least squares approximation of functions, and the
solution of partial differential equations, [61].

Exercises
4.5.1. Write the following polynomials as linear combinations of monic Legendre polynomials.
Use orthogonality to compute the coefficients: (a) t3, (b) t*+¢2, (¢) 7Tt* +2¢3 —¢.

4.5.2.(a) Find the monic Legendre polynomial of degree 5 using the Gram—Schmidt process.
Check your answer using the Rodrigues formula. (b) Use orthogonality to write 5 as a
linear combination of Legendre polynomials. (c¢) Repeat the exercise for degree 6.

${ 4.5.3.(a) Explain why g,, is the unique monic polynomial that satisfies (4.55). (b) Use this
characterization to directly construct gs(t).

4.5.4. Prove that the even (odd) degree Legendre polynomials are even (odd) functions of ¢.

4.5.5. Prove that if p(t) = p(—t) is an even polynomial, then all the odd-order coefficients
C9j4+1 = 0 in its Legendre expansion (4.56) vanish.

4.5.6. Write out an explicit Rodrigues-type formula for the monic Legendre polynomial g, (t)
and its norm.

4.5.7. Write out an explicit Rodrigues-type formula for an orthonormal basis Qy(t),...,Q, (t)
for the space of polynomials of degree < n under the inner product (4.52).

¢ 4.5.8. Use the Rodrigues formula to prove (4.59). Hint: Write (£ — 1) = (t — 1)¥ (¢ + 1)*.



4.5 Orthogonal Polynomials 231

© 4.5.9. A proof of the formula in (4.61) for the norms of the Legendre polynomials is based
1
on the following steps. (a) First, prove that || R , 12 = (=1)F (2k) !/ ) (t2 - 1)k dt by a
) 22FFL (512
(2k+1)!
by using the change of variables ¢ = cos 8 in the integral. The resulting trigonometric

1
repeated integration by parts. (b) Second, prove that / ) (752 — 1)k dt = (1)

integral can be done by another repeated integration by parts. (c¢) Finally, use the
Rodrigues formula to complete the proof.

© 4.5.10.(a) Find the roots, P, (t) = 0, of the Legendre polynomials P,, P; and P,. (b) Prove
that for 0 < j < k, the polynomial R; ; (t) defined in (4.62) has roots of order k — j at
t = =1, and j additional simple roots lying between —1 and 1. Hint: Use induction on j
and Rolle’s Theorem from calculus, [2, 78]. (c¢) Conclude that all k roots of the Legendre
polynomial P, (t) are real and simple, and that they lie in the interval —1 < ¢ < 1.

Other Systems of Orthogonal Polynomials

The standard Legendre polynomials form an orthogonal system with respect to the L?
inner product on the interval [—1,1]. Dealing with any other interval, or, more generally,
a weighted inner product, leads to a different, suitably adapted collection of orthogonal
polynomials. In all cases, applying the Gram—Schmidt process to the standard monomials
1,t,t2,¢3,... will produce the desired orthogonal system.

Example 4.54. In this example, we construct orthogonal polynomials for the weighted

inner product?
(Fav= [ r@gtetae (4:66)
0
on the interval [0,00). A straightforward integration by parts proves that

/ the~tdt = k!, and hence (t 7)Y = (i +4)), ]2 = (2i)!. (4.67)
0

We apply the Gram—Schmidt process to construct a system of orthogonal polynomials for
this inner product. The first few are

QO(t) =1, ||qu2 =1,
(t,q)

Q1(t):t - ||q HO2 QO(t) :t—l, ||Q1 ||2:17

0

, (Poa) (2.4 : : (4.68)

2 = - 5 40 - 5 41 =t - ) 21 = %
go(t) =1 qo(t) q(t) =t — 4t +2 g )" =4

g0l lq, |l
q3(t) =3 — 9t* + 18t — 6, g5 1> = 36.

The resulting orthogonal polynomials are known as the (monic) Laguerre polynomials,
named after the nineteenth-century French mathematician Edmond Laguerre, [59].

T The functions f, g must not grow too rapidly as ¢ — oo in order that the inner product be
defined. For example, polynomial growth, meaning | f(t)|,|g(t)| < Ct" for t > 0 and some

C >0,0< N < oo, suffices.
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In some cases, a change of variables may be used to relate systems of orthogonal poly-
nomials and thereby circumvent the Gram—Schmidt computation. Suppose, for instance,
that our goal is to construct an orthogonal system of polynomials for the L? inner product

b
<Uy»:/f@mﬂﬁ

on the interval [a,b]. The key remark is that we can map the interval [—1,1] to [a, b] by
a simple change of variables of the form s = a + St. Specifically,

_2t—b—a

s = a4 will change a<t<b to —1<s<1. (4.69)
—a
It therefore changes functions F'(s), G(s), defined for —1 < s < 1, into functions
2t —b—a 2t —b—a
H=r( 221 H=c 221 4.
ro=r( 20 s -a( 220, (1.70)

2
defined for a <t < b. Moreover, when integrating, we have ds = b a dt, and so the inner
products are related by -

<ﬁmzlﬂwmwwzfi(ﬁigﬁ)a(ﬁigﬁ>ﬁ
—a b—a

. , (4.71)
= _1F(8)G(S) ds = (F,G),

2 2

where the final L2 inner product is over the interval [—1,1]. In particular, the change of
variables maintains orthogonality, while rescaling the norms; explicitly,

h—
(f,g)=0 ifandonlyif (F,G)=0, while |f| =1/ 2a | F].  (4.72)

Moreover, if F(s) is a polynomial of degree n in s, then f(¢) is a polynomial of degree n in
t and conversely. Let us apply these observations to the Legendre polynomials:

Proposition 4.55. The transformed Legendre polynomials

~ 2t—b—a ~ b—a
BO-r(Z220), 1Bl =ypay. k-0l @7)

form an orthogonal system of polynomials with respect to the L? inner product on the
interval [a, b].

Example 4.56. Consider the L? inner product (f,g) = fol f(t)g(t)dt. The map

s =2t —1 will change 0 <t < 1to —1 < s < 1. According to Proposition 4.55, this
change of variables will convert the Legendre polynomials P, (s) into an orthogonal system
of polynomials on [0, 1], namely

D ~ 1
P,(t)= P, (2t —1), with corresponding L? norms | Pl = T
The first few are
Py(t) =1, Py(t) = 20t> — 30> + 12t — 1,
Py(t) =2t -1, P,(t) = 70" — 140#° + 90> — 20¢ + 1, (4.74)

Py(t) = 61> — 61+ 1, Py(t) = 252¢° — 630t* 4+ 560¢> — 210> + 30t — 1.
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Alternatively, one can derive these formulas through a direct application of the Gram—
Schmidt process.

Exercises

4.5.11. Construct polynomials F, P, P,, and P; of degree 0, 1,2, and 3, respectively, that are
2
orthogonal with respect to the inner products (a) ( = / f@yg)dt, (b) {(f,g) =

/ f(t)g(t)tdt, (c) / ) gty dt, (d) / Ft)ygtye 1t ar..
4.5.12. Find the first four orthogonal polynomials on the interval [0, 1] for the weighted L2
inner product with weight w(t) = .
4.5.13. Write down an orthogonal basis for vector space PO of quintic polynomials under the
2
inner product {(f,g) = / ) f(t) g(t)dt.
4.5.14. Use the Gram—Schmidt process based on the L? inner product on [0, 1] to construct a

system of orthogonal polynomials of degree < 4. Verify that your polynomials are multiples
of the modified Legendre polynomials found in Example 4.56.

4.5.15. Find the first four orthogonal polynomials under the Sobolev H' inner product
1
(f.g)= / ) [ () g(t) + f'(t)g'(t) ] dt; cf. Exercise 3.1.27.

¢ 4.5.16. Prove the formula for || P, || in (4.73) .
4.5.17. Find the monic Laguerre polynomials of degrees 4 and 5 and their norms.
{ 4.5.18. Prove the integration formula (4.67).
{ 4.5.19.(a) The physicists’ Hermite polynomials are orthogonal with respect to the inner
product (f,g) = /_O:O f)gt)e ** dt. Find the first five monic Hermite polynomials.

o0 2
Hint: / e Udt= /7. (b) The probabilists prefer to use the inner product
— 00

(f,g)= /j:o f)gt)e /2 4t. Find the first five of their monic Hermite polynomials.

(¢) Can you find a change of variables that transforms the physicists’ versions to the
probabilists’ versions?

© 4.5.20. The Chebyshev polynomials: (a) Prove that T, (t) = cos(narccost), n =0,1,2,...,
form a system of orthogonal polynomials under the weighted inner product

1 f(t)g(t)dt

(Fog)=[ (4.75)
-1 V1-—t

(b) What is ||T,, |7 (c) Write out the formulas for Tj(t), ..., Tg(t) and plot their graphs.

4.5.21. Does the Gram—Schmidt process for the inner product (4.75) lead to the Chebyshev
polynomials T, (t) defined in the preceding exercise? Explain why or why not.

4.5.22. Find two functions that form an orthogonal basis for the space of the solutions to the
differential equation y” — 3y’ 4+ 2y = 0 under the L? inner product on [0, 1].

4.5.23. Find an orthogonal basis for the space of solutions to the differential equation
n

y" —y" +4y' —y =0 for the L? inner product on [—m,7].



234 4 Orthogonality

© 4.5.24. In this exercise, we investigate the effect of more general changes of variables on
orthogonal polynomials. (a) Prove that ¢t = 25% — 1 defines a one-to-one map from the
interval 0 < s < 1 to the interval —1 < ¢ < 1. (b) Let p,(¢) denote the monic Legendre
polynomials, which are orthogonal on —1 < ¢ < 1. Show that g, (s) = pk(252 -1
defines a polynomial. Write out the cases k = 0,1, 2, 3 explicitly. (¢) Are the polynomials
gy, (s) orthogonal under the L2 inner product on [0,1]? If not, do they retain any sort of
orthogonality property? Hint: What happens to the L? inner product on [—1,1] under the

change of variables?

4.5.25.(a) Show that the change of variables s = e~ ! maps the Laguerre inner product (4.66)
to the standard L? inner product on [0, 1]. However, explain why this does not allow you
to change Legendre polynomials into Laguerre polynomials. (b) Describe the functions
resulting from applying the change of variables to the modified Legendre polynomials (4.74)
and their orthogonality properties. (¢) Describe the functions that result from applying
the inverse change of variables to the Laguerre polynomials (4.68) and their orthogonality
properties.

4.5.26. Explain how to adapt the numerically stable Gram—Schmidt method in (4.28) to
construct a system of orthogonal polynomials. Test your algorithm on one of the preceding
exercises.
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Chapter 5

Minimization and Least Squares

Because Nature seems to strive for efficiency, many systems arising in physical applications
are founded on a minimization principle. In a mechanical system, the stable equilibrium
configurations minimize the potential energy. In an electrical circuit, the current adjusts
itself to minimize the power. In optics and relativity, light rays follow the paths of minimal
distance — the geodesics on the curved space-time manifold. Solutions to most of the
boundary value problems arising in applications to continuum mechanics are also char-
acterized by a minimization principle, which is then employed to design finite element
numerical approximations to their solutions, [61,81]. Optimization — finding minima
or maxima — is ubiquitous throughout mathematical modeling, physics, engineering, eco-
nomics, and data science, including the calculus of variations, differential geometry, control
theory, design and manufacturing, linear programming, machine learning, and beyond.

This chapter introduces and solves the most basic mathematical minimization problem:
a quadratic polynomial function depending on several variables. (Minimization of more
complicated functions is of comparable significance, but relies on the nonlinear methods
of multivariable calculus, and thus lies outside our scope.) Assuming that the quadratic
coefficient matrix is positive definite, the minimizer can be found by solving an associated
linear algebraic system. Orthogonality also plays an important role in minimization prob-
lems. Indeed, the orthogonal projection of a point onto a subspace turns out to be the
closest point or least squares minimizer. Moreover, when written in terms of an orthogonal
or orthonormal basis for the subspace, the orthogonal projection has an elegant explicit
formula that also offers numerical advantages over the direct approach to least squares
minimization.

The most common way of fitting a function to prescribed data points is to minimize the
least squares error, which serves to quantify the overall deviation between the data and the
sampled function values. Our presentation includes an introduction to the interpolation of
data points by functions, with a particular emphasis on polynomials and splines. The final
Section 5.6 is devoted to the basics of discrete Fourier analysis — the interpolation of data
by trigonometric functions — culminating in the remarkable Fast Fourier Transform, a key
algorithm in modern signal processing and numerical analysis. Additional applications of
these tools in equilibrium mechanics and electrical circuits will form the focus of Chapter 6.

5.1 Minimization Problems

Let us begin by introducing three important minimization problems — the first arising in
physics, the second in analysis, and the third in geometry.
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Figure 5.1. Minimizing a Quadratic Function.

Equilibrium Mechanics

A fundamental principle of mechanics is that systems in equilibrium minimize potential
energy. For example, a ball in a bowl will roll downhill unless it is sitting at the bottom,
where its potential energy due to gravity is at a (local) minimum. In the simplest class of
examples, the energy is a quadratic function, e.g.,

flz,y) =322 =22y +4y> + 2 —2y +1, (5.1)

and one seeks the point x = z*, y = y*, (if one exists) at which f(x*,y*) achieves its
overall minimal value.

Similarly, a pendulum will swing back and forth unless it rests at the bottom of its arc,
where potential energy is minimized. Actually, the pendulum has a second equilibrium
position at the top of the arc, as in Figure 5.2, but this is rarely observed, since it is an
unstable equilibrium, meaning that any tiny movement will knock it off balance. There-
fore, a better way of stating the principle is that stable equilibria are where the mechanical
system (locally) minimizes potential energy. For a ball rolling on a curved surface, the
local minima — the bottoms of valleys — are the stable equilibria, while the local maxima
— the tops of hills — are unstable. Minimization principles serve to characterize the equi-
librium configurations of a wide range of physical systems, including masses and springs,
structures, electrical circuits, and even continuum models of solid mechanics and elasticity,
fluid mechanics, relativity, electromagnetism, thermodynamics, and so on.

Solution of Equations

Suppose we wish to solve a system of equations

fl(X):Ov f2<X) =0, fm(X)IO, (5.2)
where x = (x,,...,z,) € R™ This system can be converted into a minimization problem
in the following seemingly silly manner. Define

2 2
p(x) =[]+ o+ [fax)] = £ (5.3)

where f(x) = ( f{(x), ... , f,(X) )" and ||-|| denotes the Euclidean norm on R™. Clearly,
p(x) > 0 for all x. Moreover, p(x*) = 0 if and only if each summand is zero, and hence
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Stable Unstable
Figure 5.2. Equilibria of a Pendulum.

x = X* is a solution to (5.2). Therefore, the minimum value of p(x) is zero, and the

minimum is achieved if and only if we are at a solution to the original system of equations.
For us, the most important case is that of a linear system

Ax=Db (5.4)

consisting of m equations in n unknowns. In this case, the solutions may be obtained by
minimizing the function
p(x) = Ax -~ b]?, (5.5)

where ||-|| denotes the Euclidean norm on R™. Clearly p(x) has a minimum value of 0,
which is achieved if and only if x is a solution to the linear system (5.4). Of course, it
is not clear that we have gained much, since we already know how to solve Ax = b by
Gaussian Elimination. However, this artifice turns out to have profound consequences.

Suppose that the linear system (5.4) does not have a solution, i.e., b does not lie in
the image of the matrix A. This situation is very typical when there are more equations
than unknowns. Such problems arise in data fitting, when the measured data points are all
supposed to lie on a straight line, say, but rarely do so exactly, due to experimental error.
Although we know there is no exact solution to the system, we might still try to find an
approximate solution — a vector x* that comes as close to solving the system as possible.
One way to measure closeness is by looking at the magnitude of the error as measured by
the residual vector r = b — A x, i.e., the difference between the right- and left-hand sides of
the system. The smaller its norm ||r|| = || Ax — b /||, the better the attempted solution. For
the Euclidean norm, the vector x* that minimizes the squared residual norm function (5.5)
is known as the least squares solution to the linear system, because ||t ||? =r?+ -+ +72 is
the sum of the squares of the individual error components. As before, if the linear system
(5.4) happens to have an actual solution, with Ax* = b, then x* qualifies as the least
squares solution too, since in this case, || Ax* — b|| = 0 achieves its absolute minimum. So
least squares solutions include traditional solutions as special cases.

Unlike an exact solution, the least squares minimizer depends on the choice of inner
product governing the norm; thus a suitable weighted norm can be introduced to emphasize
or de-emphasize the various errors. While not the only possible approach, least squares
is certainly the easiest to analyze and solve, and, hence, is often the method of choice for
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v
Figure 5.3.  The Closest Point.

fitting functions to experimental data and performing statistical analysis. It is essential
that the norm arise from an inner product; minimizing the error based on other kinds of
norms is a much more difficult, nonlinear problem, although one that has recently become
of immense practical interest in the newly emergent field of compressed sensing, [28].

The Closest Point

The following minimization problem arises in elementary geometry, although its practical
implications cut a much wider swath. Given a point b € R and a subset V' C R™, find
the point v* € V that is closest to b. In other words, we seek to minimize the Euclidean
distance d(v,b) = || v — b|| over all possible v € V.

The simplest situation occurs when V is a subspace of R™. In this case, the closest
point problem can, in fact, be reformulated as a least squares minimization problem. Let
vy,...,V, be a basis for V. The general element v € V is a linear combination of the
basis vectors. Applying our handy matrix multiplication formula (2.13), we can write the
subspace elements in the form

v=x,v,+ - +z,v, =AX,

where A = (vy v, ...V, ) is the m x n matrix formed by the (column) basis vectors

and x = (x,,2y,...,2, )T are the coordinates of v relative to the chosen basis. In this

manner, we can identify V' with the image of A, i.e., the subspace spanned by its columns.
Consequently, the closest point in V' to b is found by minimizing ||v —b||> = || Ax — b/|?
over all possible x € R™. But this is exactly the same as the least squares function (5.5)!
Thus, if x* is the least squares solution to the system Ax = b, then v* = A x* is the closest
point to b belonging to V' = img A. In this way, we have established a profound and fertile
connection between least squares solutions to linear systems and the geometrical problem
of minimizing distances to subspaces. And, as we shall see, the closest point v € V' turns
out to be the orthogonal projection of b onto the subspace.

All three of the preceding minimization problems are solved by the same underlying
mathematical construction, which will now be described in detail.

Remark. In this book, we will concentrate on minimization problems. Maximizing a
function p(x) is the same as minimizing its negative — p(x), and so can be easily handled
by the same techniques.
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Exercises

Note: Unless otherwise indicated, “distance” refers to the Euclidean norm.
5.1.1. Find the least squares solution to the pair of equations 3z =1, 22 = —1.

5.1.2. Find the minimizer of the function f(z,y) = (3z — 2y + 1)% + 2z + y + 2)°.

5.1.3. Find the closest point or points to b = (—1,2 )T that lie on (a) the z-axis, (b) the
y-axis, (c) the line y = x, (d) the line z +y =0, (e) the line 2z +y = 0.

5.1.4. Solve Exercise 5.1.3 when distance is measured in (i) the co norm, () the 1 norm.

5.1.5. Given b € ]RZ, is the closest point on a line L unique when distance is measured in
(a) the Euclidean norm? (b) the 1 norm? (c¢) the co norm?

© 5.1.6. Let L C R? be a line through the origin, and let b € R? be any point.
(a) Find a geometrical construction of the closest point v € L to b when distance is
measured in the standard Euclidean norm.
(b) Use your construction to prove that there is one and only one closest point.

Vila? [b]? — (a-b)2 _ |axb]

lall |l

(c) Show that if 0 # a € L, then the distance equals
using the two-dimensional cross product (3.22).

5.1.7. Suppose a and b are unit vectors in R2. Show that the distance from a to the line
through b is the same as the distance from b to the line through a. Use a picture to
explain why this holds. How is the distance related to the angle between the two vectors?

5.1.8.(a) Prove that the distance from the point (z, )7 to the line az + by = 0 is
laxy+ by |

Va? + b2

© 5.1.9.(a) Generalize Exercise 5.1.8 to find the distance between a point (g, Y, 2o )T and the
plane ax + by + cz 4+ d = 0 in R3. (b) Use your formula to compute the distance between

(1,1,1)7 and the plane 3z — 2y 4 z = 1.

. (b) What is the minimum distance to the line az + by + ¢ = 07

5.1.10.(a) Explain in detail why the minimizer of ||v — b coincides with the minimizer of
|v — bl (b) Find all scalar functions F(z) for which the minimizer of F( |lv —b]| ) is
the same as the minimizer of ||[v —b||.

5.1.11.(a) Explain why the problem of maximizing the distance from a point to a subspace

does not have a solution. (b) Can you formulate a situation in which maximizing distance
to a point leads to a problem with a solution?

5.2 Minimization of Quadratic Functions

The simplest algebraic equations are linear systems. As such, one must thoroughly un-
derstand them before venturing into the far more complicated nonlinear realm. For mini-
mization problems, the starting point is the quadratic function. (Linear functions do not
have minima — think of the function f(x) = aa + 3, whose graph is a straight linef.) In
this section, we shall see how the problem of minimizing a general quadratic function of n

T Technically, this function is linear only when 8 = 0; otherwise it is known as an “affine
function”. See Chapter 7 for details.



240 5 Minimization and Least Squares

a>0 a<0 a=0

Figure 5.4. Parabolas.

variables can be solved by linear algebra techniques.

Let us begin by reviewing the very simplest example — minimizing a scalar quadratic
polynomial

p(z) = ax® +2bz+c (5.6)

over all possible values of x € R. If a > 0, then the graph of p is a parabola opening
upwards, and so there exists a unique minimum value. If a < 0, the parabola points
downwards, and there is no minimum (although there is a maximum). If @ = 0, the graph
is a straight line, and there is neither minimum nor maximum over all z € R — except in
the trivial case b = 0 also, and the function p(x) = ¢ is constant, with every x qualifying as a
minimum (and a maximum). The three nontrivial possibilities are illustrated in Figure 5.4.

In the case a > 0, the minimum can be found by calculus. The critical points of a
function, which are candidates for minima (and maxima), are found by setting its derivative
to zero. In this case, differentiating, and solving

p(zr)=2ax+2b=0,
we conclude that the only possible minimum value occurs at

= — 9, where p(z*)=c— g (5.7)
a a
Of course, one must check that this critical point is indeed a minimum, and not a maximum
or inflection point. The second derivative test will show that p”(2*) = 2a > 0, and so z*
is at least a local minimum.
A more instructive approach to this problem — and one that requires only elementary
algebra — is to “complete the square”. As in (3.66), we rewrite
ac— b?

p(z)=a <m + 2)2 + . (5.8)

a

If @ > 0, then the first term is always > 0, and, moreover, attains its minimum value 0
only at * = —b/a. The second term is constant, and so is unaffected by the value of x.
Thus, the global minimum of p(x) is at x* = —b/a. Moreover, its minimal value equals
the constant term, p(z*) = ¢ — b?/a, thereby reconfirming and strengthening the calculus
result in (5.7).

Now that we have the one-variable case firmly in hand, let us turn our attention to the
more substantial problem of minimizing quadratic functions of several variables. Thus, we
seek to minimize a (real) quadratic polynomial

p(x) =p(zy,...,2,) = Z kij%‘%’_QZ fizi +c, (5.9)

ij=1 i=1
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depending on n variables x = (zy,2,,..., 2, )T € R". The coeflicients k;;, f; and c are
all assumed to be real. Moreover, we can assume, without loss of generality, that the
coefficients of the quadratic terms are symmetric: k;; = k;;. (See Exercise 3.4.15 for a
justification.) Note that p(x) is more general tha